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Preface

This quarterly publication provides archival reports on developments in
programs managed by JPL’s Office of Telecommunications and Data Acquisition
(TDA). In space communications, radio navigation, radio science, and ground-based
radio and radar astronomy, it reports on activities of the Deep Space Network (DSN)
and its associated Ground Communications Facility (GCF) in planning, in support-
ing research and technology, in implementation, and in operations. Also included
is TDA-funded activity at JPL on data and information systems and reimbursable
DSN work performed for other space agencies through NASA. The preceding work
is all performed for NASA’s Office of Space Operations (OSO). The TDA Office
also performs work funded by two other NASA program offices through and with
the cooperation of the Office of Space Operations. These are the Orbital Debris
Radar Program (with the Office of Space Station) and 21st Century Communication
Studies (with the Office of Exploration).

In the search for extraterrestrial intelligence (SETT), the TDA Progress Report
reports on implementation and operations for searching the microwave spectrum. In
solar system radar, it reports on the uses of the Goldstone Solar System Radar for
scientific exploration of the planets, their rings and satellites, asteroids, and comets.
In radio astronomy, the areas of support include spectroscopy, very long baseline
interferometry, and astrometry. These three programs are performed for NASA’s
Office of Space Science and Applications (OSSA), with support by the Office of
Space Operations for the station support time.

Finally, tasks funded under the JPL Director’s Discretionary Fund and the
Caltech President’s Fund which involve the TDA Office are included.

This and each succeeding issue of the TDA Progress Report will present mate-
rial in some, but not necessarily all, of the following categories:

0SO Tasks:
DSN Advanced Systems
Tracking and Ground-Based Navigation
Communications, Spacecraft-Ground
Station Control and System Technology
Network Data Processing and Productivity
DSN Systems Implementation
Capabilities for Existing Projects
Capabilities for New Projects
New Initiatives
Network Upgrade and Sustaining
DSN Operations
Network Operations and Operations Support
Mission Interface and Support
TDA Program Management and Analysis
Communications Implementation and Operations
Data and Information Systems
Flight-Ground Advanced Engineering

0S0 Cooperative Tasks:
Orbital Debris Radar Program
21st Century Communication Studies



OSSA Tasks:
Search for Extraterrestrial Intelligence
Goldstone Solar System Radar
Radio Astronomy

Discretionary Funded Tasks
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Determination of Earth Orientation Using the
Global Positioning System

A. P. Freedman
Tracking Systems and Applications Section

Modern spacecraft tracking and navigation require highly accurate Earth-orien-
tation parameters. For near-real-time applications, errors in these quantities and
their extrapolated values are a significant error source. A globally distributed net-
work of high-precision receivers observing the full Global Positioning System (GPS)
configuration of 18 or more satellites may be an efficient and economical method
for the rapid determination of short-term variations in Earth orientation.

A covariance analysis utilizing the JPL Orbit Analysis and Simulation Software
(OASIS) has been performed to evaluate the errors associated with GPS measure-
ments of Earth orientation. These GPS measurcments appear to be highly com-
petitive with those from other techniques and can potentially yield frequent and
reliable centimeter-level Earth-orientation information while simultaneously allow-
ing the oversubscribed Deep Space Network (DSN) antennas to be used more for
direct project support.

uously available Earth-orientation knowledge accurate to
3 cm.?

l. Introduction

Knowledge of the Earth’s orientation in space is criti-
cal to the operation of NASA’s Deep Space Network
(DSN). Unless the orientation is closely monitored, the
variable rotation of the Earth can lead to errors in space-
craft navigation. In near-real-time, high-precision space-
craft-tracking applications, the need for up-to-date Earth-
orientation information is particularly crucial.  The
Magellan mission to Venus, for example, requires that
Earth-rotation errors be kept under 30 cm;! by the mid-
1990s, missions are envisioned that would require contin-

The Navstar Global Positioning System (GPS) is a
network of orbiting radio transmitters designed for naviga-
tion purposes that is revolutionizing terrestrial distance de-
terminations. The completion of the full satellite network
by the early 1990s promises to extend recent improvements
in regional geodetic measurements with GPS to a global
scale [1, 2]. The capability of GPS to pinpoint receiver
locations at the centimeter or subcentimeter level in a ter-

2 R. Treuhaft and L. Wood, “Revisions in the differential VLBI

I T. F. Runge, “UTPM calibration accuracy for Magellan,”
JPL IOM 335.5-87.81 (internal document), Jet Propulsion
Laboratory, Pasadena, California, April 30, 1987.

error budget and applications for navigation in future mis-
sions,” JPL IOM 335.4-601 (internal document), Jet Propul-
sion Laboratory, Pasadena, California, December 31, 1986.



restrial reference frame that is precisely tied to an inertial
frame suggests that GPS may be effective in monitoring
Earth-orientation changes.

Earth orientation consists of three parts: the angle
of rotation of the Earth about its rotation axis relative to
a mean rotation angle (UT1-UTC), the position of the
current axis of rotation of the Earth with respect to a
reference axis tied to the crust and mantle of the solid
Earth (polar motion), and the orientation of the rotation
axis in inertial space (precession and nutation). The first
two of these parameters, UT1 and polar motion, collec-
tively known as UTPM (Fig. 1), vary as a result of an-
gular momentum exchange between the solid parts of the
Earth and its atmosphere, oceans, and fluid core. These
Earth-orientation components can vary rapidly and unpre-
dictably. Nutations and precession are primarily products
of Earth’s interactions with other celestial bodies and are
largely periodic; they will not be dealt with in this article.

Earth orientation® is currently being monitored by a
number of precise geodetic techniques: Very Long Baseline
Interferometry (VLBI), Satellite Laser Ranging (SLR), and
Lunar Laser Ranging (LLR). These techniques can cur-
rently achieve measurement accuracies of up to 2-3 cm
over time scales as short as one hour [3]. The turnaround
time necessary to collect and process these raw data can be
quite long, however. VLBI from IRIS (International Ra-
dio Interferometric Surveying) provides daily UT1-UTC
and five-day UTPM data, while SLR from CSR (Center
for Space Research, University of Texas, Austin) provides
three-day polar-motion data. The results, however, are
not usually available until a week or more after the epoch
at which the measurements are valid. This delay is not
acceptable for many DSN navigation needs. VLBI data
obtained by JPL using the DSN antennas are known as
TEMPO (Time and Earth Motion Precision Observations)
and can be processed rapidly when necessary; demands for
radio-telescope time limit the frequency of observations to
weekly, however. Prompt reduction of data can be crit-
ical to navigation since Earth orientation is continuously

3 Earth orientation is measured in a variety of units. Polar mo-
tion is essentially an angular displacement, while rotational
variations can be expressed either as angular or temporal dis-
placements. Both can also be expressed as a distance corre-
sponding to the angular displacement measured at one Earth
radius. Thus 1 cm at the Earth’s surface is equivalent to an
angular distance of approximately 0.3 marcsec or 1.6 nrad.
The time it takes for the Earth to rotate through this angle
and move a point at the equator to the east by 1 cm is ap-
proximately 0.02 msec of time. Thus 30 cm corresponds to
0.65 msec of Earth rotation or 9.6 marcsec (47 nrad) of polar
motion.

changing. Earth rotation, in particular, is highly variable,
and changes of 25 cm per day have been known to oc-
cur. Thus no system presently active is likely to meet the
long-term DSN needs of regular, high-precision, daily mon-
itoring of Earth orientation with data reduction times of
less than one day.

VLBI, SLR, and LLR are, in addition, labor inten-
sive and require significant investments in equipment and
personnel. In VLBI, large radio telescopes are required—
telescopes whose valuable observation time is in great de-
mand at sites such as the DSN. The laser techniques use
dedicated stations to obtain data but are subject to the
vagaries of local weather conditions; thus they are not a
reliable source for regular daily measurements.

If GPS technology could produce Earth-orientation
measurements of a quality comparable to that produced by
VLBI, SLR, and LLR, it would free up significant amounts
of time on the DSN and other VLBI networks currently
being used to monitor Earth orientation. It would, more-
over, allow measurements to be made more frequently than
is now practical with VLBI. In addition, the use of radio-
frequency energy would enable GPS systems to be much
less sensitive to weather than optical systems. GPS would
not replace these VLBI, SLR, and LLR techniques (due
to systematic difficulties described below); rather, GPS
systems would be employed in a synergistic combination
with these present-day techniques to enhance overall per-
formance.

Frequent high-precision Earth-orientation data is also
of value for scientific studies. Little is known about ex-
changes of angular momentum between the solid Earth and
the atmosphere, or about the excitation of polar motions,
at periods of a week or less. Continuous GPS monitoring
would help to extend our knowledge to higher frequencies,
with benefit to geophysics, meteorology, and astronomy.
Weather forecasting, in particular, may benefit from inde-
pendent estimates of daily atmospheric angular momen-
tum as provided by geodetic Earth-orientation measure-
ments.

A GPS receiver and data-processing system is sched-
uled to be in place at each of the DSN sites within a year
to enable highly accurate, near-real-time ionospheric cal-
ibration in support of deep-space missions that transmit
at a single frequency.? This system is designed to have

* C. 1. Vegos, “DSCC Media Calibration Subsystem (DMD),
Functional Design Review (Level D),” JPL 834-30, vol. 1
(internal document), Jet Propulsion Laboratory, Pasadena,
California, May 1, 1987,



a data turnaround capability of about 12 hours. These
receivers are also expected to be part of an international,
global GPS tracking network for the TOPEX/POSEIDON
mission [4]. By 1992, therefore, a GPS system should be
in place to support the continuous monitoring of UTPM.

This article documents a covariance analysis evalu-
ating the potential of GPS for measuring Earth orienta-
tion. The assumed satellite constellation is that originally
proposed by the U.S. Department of Defense as the op-
erational configuration. It consists of 18 satellites with
12-hour orbits and lying in six orbit planes equidistantly
placed in longitude, three satellites per orbit plane. This
constellation enables at least five satellites to be seen and
tracked most of the time from anywhere on the Earth’s
surface [5]. Although the Air Force has subsequently mod-
ified this constellation to include up to 24 satellites, these
changes should not significantly alter the conclusions of
this study. The network of ground receivers is assumed to
consist of six sites regularly spaced around the globe (three
of these coincident with the DSN sites).

These sites are assumed to be equipped with receivers
that yield two distinct observables: “carrier phase,” based
on measurements of the radio frequency (RF) carrier that
is transmitted by the GPS satellites, and “pseudorange,”
based on a precise modulation of the transmitted signal.
Both observables are indicators of the distance between a
satellite and a receiver. Pseudorange consists of the light
travel time between the two points, plus any clock offsets
of the receiver and transmitter. It is often corrupted by
multipath effects and is therefore the noisier data type.
Carrier phase monitors the relative position change be-
tween the satellite and ground station. It is a cleaner data
set, but the absolute distance is made ambiguous by a con-
stant bias (equal to an integer number of wavelengths) for
each continuously measured satellite arc.

Contemporary receiver capabilities are better for car-
rier phase than for pseudorange, but the quality of pseudo-
range data is rapidly improving. The GPS receiver being
installed at the DSN sites can now achieve, under opti-
mum conditions, pseudorange noise levels as low as 5 cm
(averaged over 30 minutes), as well as carrier phase noise
levels well below 0.5 cm [6]. By about 1992, when the full
GPS constellation is active, such high-precision pseudor-
ange and carrier phase data should be routinely available
from numerous sites around the globe.

1l. Covariance Analysis

This study utilized the Orbit Analysis and Simulation
Software (OASIS) program, developed at JPL for the co-

variance and simulation analysis of Earth-orbiting satel-
lites [7). It consists of a number of independent mod-
ules: PV integrates the satellite orbits and computes the
variational partial derivatives for satellite-related param-
eters; REGRES-PMOD generates simulated observations
and their measurement partials; OAFILTER does the ac-
tual covariance analysis, i.e., using specified uncertainties
of the data and the models, the program estimates the un-
certainties in desired parameters; and UDIGEST generates
the desired output. Parameters can be either estimated
(adjusted) or “considered”; “considered” parameters are
treated as systematic error sources [8]. Adjusted param-
eters can be modeled either as constants or as stochastic
variables.

Parameters that can be adjusted include

(1) satellite epoch states, i.e., their initial positions
and velocities

(2) various satellite force-model parameters such as
solar-radiation pressure and Y-bias

(3) satellite and station clock offsets
(4) station locations

(5) wet-zenith tropospheric path delay for each sta-
tion

(6) Earth-orientation parameters

(7) gravitational harmonic coefficients and the value
of GM (the gravitational constant, G, multiplied
by the mass of the Earth, M)

(8) geocenter offset

(9) carrier phase biases

To determine Earth orientation with GPS, one needs
to know the precise position and orientation of a set of
points on the Earth’s surface with respect to an inertial
reference frame as a function of time. The GPS satellites
provide an orbital reference frame that is not truly inertial
but is slowly varying with time. Uncertainties in the GPS
orbits can be reduced through estimation of parameters
(1), (2), and (7) described above. The distances between
satellites and receivers can be determined from the data
after removing the effects of parameters (3), (4), (5), and
(9). Determining the orientation of the satellite constel-
lation in inertial space may be achieved by fixing the lo-
cations of a few ground receivers. These sites are known
as fiducial sites and are tied by local ground surveys to
nearby, colocated VLBI antennas whose relative positions
in inertial space are known precisely [9]. The origin of this
VLBI frame may not be coincident with the Earth’s center



of mass as determined by the satellites; this geocenter off-
set (parameter 8) can also be estimated. Thus the satellite
framework can be constrained in inertial space, and the
movements of the solid Earth within that framework, such
as Earth orientation, can be observed.

Appropriate a priori uncertainties for all estimated pa-
rameters are needed to strengthen the solution. Deciding
which parameters to estimate or consider, what a priori
values to use, and which data to include depends on the
physical problem of interest.

The following questions were addressed in this study:

(a) How many GPS measurements are necessary to
generate Earth-orientation values with a preci-
sion comparable to present techniques? In other
words, how long need the observation periods be
in order to produce useful Earth-orientation
data?

(b) Are both pseudorange and carrier phase data
types needed, and what maximum data noise is
permissible for each type to allow adequate reso-
lution of Earth-orientation parameters?

(c) How important are the effects of solar-radiation
pressure, station location errors, tropospheric un-
certainties, and geocenter errors on Earth-orien-
tation estimation? Do these parameters need to
be estimated along with satellite states and
Earth-orientation parameters, or can they be con-
sidered?

The parameter-estimation strategy is listed in Table 1.
Earth-orientation parameters and their rates of change are
all estimated with a priori uncertainties at least as large as
the uncertainties expected in VLBI-provided UTPM prior
to a GPS measurement, and at least a factor of 10 larger
than the final, desired uncertainties. Satellite states and
solar-radiation parameters are also estimated, with a pri-
ori sigmas comparable to the known uncertainties of the
broadcast satellite ephemerides and of solar-radiation ef-
fects. Both DSN and non-DSN station locations are esti-
mated, with the three DSN sites comprising the fiducial
network constrained more tightly than the non-DSN sites.
A priori sigmas for the station locations correspond to
the present-day uncertainties of the VLBI baselines. The
wet-zenith troposphere delay is estimated with an a priori
sigma that is appropriate for a dry climate if surface mete-
orology data are available, and is more than adequate for
wetter regions if water vapor radiometers are used.

The geocenter, carrier phase biases, and clock errors
were all estimated with large, effectively unconstrained

a priori values. One station clock was fixed as a reference
clock. All parameters were estimated as constants over the
observing period, except for the clock errors, which were
modeled as white noise [10].

The assumed data noise levels are appropriate for a
DSN GPS receiver operating either in a poor, noisy propa-
gation environment (20-cm pseudorange, l-cm carrier
phase) or in a reasonably good environment (5 ¢cm, 0.5 cm,
respectively). Note that these data noise levels assume in-
dividual measurements averaged over a 5-minute interval,
or “batch.”

Details of the software capabilities and modeling
strategies for most parameters are described in [10]. Six
matrix rotations® are applied to station-location vectors to
convert them from an Earth-fixed reference frame (1903.0
CIO frame) to a geocentric inertial system (J2000). Three
of these rotations correspond to UT1 and the two compo-
nents of polar motion. For this study, Earth-orientation
rates are also needed. The UTPM components are thus
modeled as §(t) = a + b(t — tp), where 4(t) is a UTPM pa-
rameter residual, a is the estimated value of the constant
component at some epoch tg, and b is the estimate of the
rate component.

Ifl. Results and Discussion

Presented below are the results of covariance analy-
ses for three distinct models summarized in Table 2. In
model A, only pseudorange is employed, and these data
have a high noise level. This model thus represents a
“worst case” scenario for determining Earth orientation.
Model B is identical to A, except that higher quality pseu-
dorange data are assumed. Model C represents a near-
optimal situation with regard to data quality: Both high-
quality pseudorange (5 cm) and carrier phase (0.5 cm) are
employed jointly. Note that this “best-case” model repre-
sents the expected quality of the data. In all of these mod-
els, station locations, wet-zenith tropospheric delays, solar
pressure, clock offsets, geocenter offset, and carrier phase
biases are assumed to be estimated along with Earth-orien-
tation parameters and satellite epoch states.

The Earth-rotation parameter, UT1-UTC, is not ex-
pected to be directly measurable by GPS. An error in the
satellite-node longitudes cannot unambiguously be sepa-

5 W. L Bertiger, “Non-force models module,” OASIS Math-

ematical Description, V. 1.0, JPL D-3139 (internal docu-
ment), Jet Propulsion Laboratory, Pasadena, California,
April 1986.



rated from uncertainty in UT1. This is a problem com-
mon to all satellite geodesy, including SLR. If, however,
GPS can determine the change over time of UT1-UTC,
then this change can be combined with an initial value
from VLBI measurements to yield the full UT1-UTC as a
function of time.

Figure 2 illustrates the ability of GPS to monitor the
rate of change of UT1-UTC, also known as length-of-day
(LOD). With eight hours of observation, none of the mod-
els has achieved the measurement precision of present-day
techniques. This present-day capability, available from
VLBI or SLR after a processing delay of a week or longer, is
indicated on Figs. 2, 4, and 5 by an arrow. With 16 hours of
observation, however, model C, with its high-quality pseu-
dorange and carrier phase data, can resolve LOD to better
than 5 cm. By 24 hours, both models B and C show error
levels comparable to or better than current uncertainties.
The best scenario, model C, predicts subcentimeter LOD
accuracy with 24 hours of GPS tracking.

This powerful ability to measure the rate of change of
UT1-UTC enables the estimation of UT1-UTC with the
help of VLBI. Because GPS and VLBI receivers are colo-
cated at DSN sites, the VLBI and GPS reference frames
should be precisely defined with respect to each other,
yielding a high-quality GPS tie to inertial space. By inte-
grating LOD over time, the total change in UT1-UTC can
be estimated and added to an initial value determined from
VLBI. If UT1-UTC can be measured accurately to 2 cm
at an initial epoch, for example, daily estimates of LOD
with GPS will add less than one centimeter per day to this
uncertainty. To remain within 30 centimeters of the true
UT1-UTC, VLBI measurements of UT1-UTC may only
be needed monthly. This is illustrated in Fig. 3. Combin-
ing and smoothing all the data from various sources will
yield better UT1 estimates, but these will only be avail-
able much later, after additional data are obtained. Thus
GPS and VLBI are complementary techniques that can be
combined synergistically to yield improved UT1 estimates.

Figure 4 illustrates the improvement with observing
time of the Y component of polar motion (PMY). The
X component (PMX) behaves in a similar manner and is
not illustrated here. By 16 hours, the “best case” sce-
nario of model C shows measurement accuracy comparable
to present techniques, while by 24 hours model B (high-
quality pseudorange) also yields an acceptable predicted
error. The error estimates for all three models seem to
be converging at the few-centimeter level. This is a hm-
itation controlled mainly by the a priori station location
uncertainties (constrained at 3-5 centimeters for each of
three components).

Figure 5 shows the estimate of the error in the rate of
change of PMY as a function of observing time; the rate
of change of PMX error exhibits similar temporal varia-
tions. The behavior illustrated here is similar to that of
the LOD component (Fig. 2). All three models show rapid
improvement with time; by 24 hours, models B and C
again achieve high-quality rate measurements. In the best
case (model C), the error is down at the few-mm/day level.

It appears that GPS determination of Earth orienta-
tion is feasible for LOD, polar motion, and polar-motion
rates. With less than 24 hours of tracking, these compo-
nents will be as well-determined as measurements by cur-
rent techniques. Recall, however, that current techniques
only provide these values many days after the measure-
ments are taken, whereas GPS is expected to deliver the
results to the DSN within 12 hours. The best estimates
come, as expected, with the smallest data noise. Com-
bining high-quality pseudorange and carrier phase data
reduces the uncertainties in Earth-orientation parameters
most rapidly, achieving present-day measurement precision
within approximately 16 hours. High-quality pseudorange
data alone (model B) is the next-best option, measuring
UTPM to an acceptable level within 24 hours.

Do Earth-orientation data continue to improve if ob-
servations are extended beyond 24 hours? And can UTPM
be estimated every day with consistently high accuracy?
To answer these questions, parameters that are not ex-
pected to change with time, such as station locations and
GPS orbit epoch states, should be modeled as constant
over the entire observing period. Earth-orientation pa-
rameters, which do change with time and for which one
hopes to observe the most rapid variations possible, need
to be periodically “reset,” i.e., their uncertainties inflated
at regular intervals during the observing session while sub-
sequent data attempt to constrain their then-current val-
ues.

Figure 6 illustrates this situation. Data are taken for
48 hours, with all parameters except Earth orientation
and clock errors modeled as constant over this time pe-
riod. Just after 24 hours, the uncertainties of the Earth-
orientation parameters are reset at their a priori values
(while clock errors continue to be modeled as white noise).
Since additional data need only constrain Earth orienta-
tion, these parameters improve much more rapidly than in
the first 24 hours. For comparison, Earth-orientation pa-
rameters estimated as constant over the entire 48 hours are
also shown. This figure is produced with model B, using
high-quality pseudorange only; performance is significantly
enhanced if carrier phase data are included.



__ Ineasurements.

At 24 hours, PMY error is estimated to be 3 c¢m.
Twelve hours after resetting (i.e., at 36 hours) the error is
already down to 6 cm (versus > 10 cm in the first 12 hours);
by 48 hours, the error is again at 3 cm. This compares with
an error of 2 cm if PMY were estimated as constant over
the full 48 hours. Although the 48-hour estimate after re-
setting is no better than the 24-hour estimate, the error
drops much more rapidly in the second 24 hours than dur-
ing the first. Thus polar-motion measurements every 12
to 16 hours may be possible with this technique, i.e., after
other parameters have been suitably constrained during
the first 24 hours.

UT1-UTC and PMY rates show even more pro-
nounced improvement. LOD at 24 hours shows an error
of about 2 c¢m; continuing to 48 hours brings this down
to < 0.5 cm, while resetting at 24 hours yields 3 em at
36 hours and 1 cm at 48 hours. The polar-motion rate im-
proves from 5 cm/day at 24 hours to < 0.5 cm/day after
48 hours, and to < 1.5 cm/day if reset after 24 hours.

All these values are comparable to or better than
present-day measurement capabilities whose time resolu-
tions are 24 hours or more. Thus long arcs of GPS data
show promise for frequent high-quality Earth-orientation
Future studies will model Earth orien-
tation stochastically, treating each UTPM parameter as
a random walk whose standard deviation is allowed to
grow in a manner consistent with the empirical behavior

of UTPM.

To see whether station locations, solar-radiation pres-
sure, geocenter location, and wet-zenith troposphere delay
are all truly necessary to be adjusted along with satellite
orbits and Earth orientation, a number of covariance runs
were performed in which these parameters were consid-
ered. One of these is shown in Fig. 7. In this model, 20-cm
pseudorange and l-cm carrier phase were assumed. Solar
pressure and geocenter position were adjusted along with
satellite epoch states and Earth orientation, while station
locations and wet-zenith troposphere delays were consid-
ered. All the Earth-orientation parameters and their rates
show a high sensitivity to the considered parameters, as the
formal error (labelled “Data”) is dwarfed by the uncertain-
ties due to considered effects. The station location errors,
considered at 5 cm for each component, dominate the to-
tal error (“Total RSS sigma”), while the wet troposphere
delay, considered at 1 cm, has a smaller but significant
effect.

These results suggest that, with 24 hours of data, sta-
tion locations and wet-zenith troposphere delays do need to
be adjusted in the estimation in order to generate reliable
UTPM estimates (as has, in fact, been done). Additional
consider runs (not shown) demonstrate that solar pressure
is a significant error source even at 12 hours and needs
to be adjusted, whereas the geocenter location does not
seem to have a significant effect on Earth orientation at
an uncertainty level of 10 cm. Since consider errors scale
linearly with the uncertainty in the considered parameter,
if station locations are known to better than 1 ¢m in each
component, their effects will not be significant at 24 hours.
Similarly, it is not necessary to adjust the wet-zenith tro-
posphere delay if it is known to better than 1 cm.

IV. Conclusions

This covariance analysis demonstrates that

(1) High-quality length-of-day and polar-motion data
can be obtained with GPS in under 24 hours, with
a precision comparable to or greater than present-
day techniques.

(2) UT1-UTC may be reliably determined if periodic
reference frame ties are performed, and initial
values of UT1-UTC measured, with VLBI using

colocated recelvers.

(3) The best combination of data types is high-
quality pseudorange plus carrier phase, although
high-quality pseudorange (data noise < 5 cm)
alone performs well.

(4) It is necessary at present to adjust solar-radiation
pressure and Y-bias, station locations, and wet-
zenith troposphere delay in addition to satellite
states and Earth-orientation parameters. How-
ever, if the a priori uncertainties in the station po-
sitions or troposphere can be reduced, they need
not be included in the estimation process.

In conclusion, it appears that GPS will be a useful ad-
dition to the collection of techniques currently employed to
measure Earth orientation, and it may provide a reliable,
economical method of monitoring in near-real-time high-
frequency variations in UTPM. For the DSN, GPS meth-
ods may considerably reduce the demand for antenna time
needed to measure Earth-orientation parameters while si-
multaneously enhancing the parameters’ accuracy.
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Table 1. Parameter-estimation strategy (a priori sigmas)

Earth-orientation parameters

UT1-UTC rate
PMX, PMY
PMX, PMY rates

10~7 {~ 10 msec/day)
80 nrad (~ 16 marcsec)
107! rad/sec (~ 200 marcsec/day)

Satellite parameters (18-satellite constellation)

X, Y, Z positions

X, Y, Z velocities
Solar-radiation pressure (X, Z)*
Y-Bias*

10 m (each component)

1 mm/sec (each component)
50 percent

10712 km/sec? (100 percent)

Station parameters (6 stations with global distribution})

DSN station locations®
Non-DSN station locations®

Wet-zenith troposphere delay*

3 cm (each component)

5 cm (each component)
(both 5 cm, if considered)
10 cm

(1 cm, if considered)

Other parameters

Geocenter*

Carrier phase biases
Satellite and station clocks
(modeled as white noise)

100 m {each component)
(10 cm, if considered)

10 km

1 kn (except one station)

Data noise

Pseudorange
Carrier phase

20 am, 5 cm (5-min batches)
1 cm, 0.5 cm {5-min batches)

* These parameters were considered in the covariance analyses dis-
cussed in the text, but are estimated in the models shown in Table 2.

Table 2. Models

Model

Data

A (“worst case model”)
B

C (“best case model”}

20-cm pseudorange only
5-cm pseudorange only

5-cmn pseudorange
0.5-cm carrier phase
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Fig. 1. Schematic illustration of the components of Earth
orlentation: polar motion (PMX, PMY) and UT1-UTC.
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A simple analytical model has been developed for the electric and ponderomo-
tive (trapping) potentials in linear ion traps. This model was used to calculate the
required voltage drive to a mercury trap, and the result compares well with exper-
iments. The model gives a detailed picture of the geometric shape of the trapping
potential and allows an accurate calculation of the well depth. The simplicity of
the model allowed an investigation of related, more exotic trap designs which may
have advantages in light-collection efficiency.

l. Introduction

Radio frequency (RF) quadrupole ion traps have great
importance to the development of new atomic frequency
standards and high-precision measurements. The three-
dimensional quadrupole trap has mainly been used. The
ideal geometry for the electrodes of this trap is hyper-
boloids of revolution, which produce a pure quadrupole
field. Practical traps are built with a different, more open
geometry because of the need to collect light efficiently
from the ions. Ion fluorescence is used to determine its
quantum state, and the collection efficiency is an important
factor in the signal-to-noise ratio. Deviations in the elec-
tric field and trapping potential from a pure quadrupole
are usually not considered in detail due to the difficulty in
calculating them.

In order to increase the number of trapped ions with-
out degrading the frequency stability, the Time and Fre-
quency Systems Research Group recently introduced into
frequency-standard research a linear trap based on the
quadrupole mass spectrometer [1]. A side benefit of this
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trap geometry is the ability to calculate the electric and
trapping potentials to good accuracy with a simple an-
alytic model. In this article, the model is developed and
used to predict an ion resonance frequency, which has been
experimentally measured. The article then shows how the
model can also be used to investigate similar but more
exotic geometries which may be advantageous in some ap-
plications.

The linear trap comsists of four parallel cylindrical
rods arranged with their centers on the corners of a square.
An RF voltage is applied to the rods so that nearest neigh-
bors have opposite polarity. This creates an alternating
two-dimensional quadrupole electric field between the rods.
The field confines ions along the center axis of the trap
by the ponderomotive force, just as in a quadrupole mass
spectrometer. Two endcap electrodes with a DC bias volt-
age applied confine the ions axially. This article considers
only the center axial region, far enough from the endcaps
so that the field is essentially two-dimensional. The DC
fields from the endcaps decay exponentially along the axis,



so that this restriction applies to the vast majority of the
trapping volume.

The electric fields due to four cylindrical rods have
been studied for years by designers of mass spectrometers
and particle accelerators. In order to achieve the closest
approximation to a true quadrupole field, it has been found
that the ratio of the rod radius to the distance between the
rod center and the trap axis reaches its optimum value at
0.5342. This value was first determined by measurements
on a quadrupole accelerator magnet [2] and later repro-
duced with numerical calculations [3].

A radius-spacing ratio of 0.5342 produces a geometry
that is too closed to allow efficient light collection from
ions. A pure quadrupole field is not really necessary if ion
confinement is the only goal; hence, in this case the ra-
tio can be reduced. The trap discussed here has a ratio
of 0.25, and even smaller ratios might be desirable. The
smallness of the ratio leads directly to a simple approxima-
tion, namely, the fields produced by infinitely thin rods. A
conducting rod with an applied voltage has some induced
charge, and as the rod diameter is reduced, all the charge
coalesces into a line. This idea can be used to transform a
two-dimensional boundary-value problem into a much sim-
pler calculation of the potential produced by fixed sources.
All the calculations that follow are based on fields gener-
ated by an array of uniform parallel line charges.

Il. Model for a Four-Rod Trap

Since the model field is two-dimensional, the method
of complex variables can be used. This is not necessary,
but makes the calculation of the trapping potentials a little
easier. Adopting the notation of Landau and Lifshitz [4], a
positive line charge at z = zo produces a complex potential
w = — log(z — zg), whose real part is the ordinary electric
potential. Dimensionless quantities are now used to cal-
culate the geometric form of the potentials. Scale factors
are introduced later to calculate real trap parameters. The
model for the quadrupole trap consists of two negative line
charges at z = 4i and two positive line charges at z = & 1.
This produces the complex potential

_1 224+ 1
w=n 22 -1

The ponderomotive trapping potential is proportional to
the square of the electric field F [5]. To calculate this, note
that —Fy + iFy = dw/dz, so that

dw
FI?=|—
|F| e

216z

BGEE

Changing to polar coordinates, it is found that

1672

FI? =
|7l r8 — 2rfcosdg + 1

=TG(r,¢) (1)

where T' = 16. One can expand G about the origin to
obtain

G(r, ¢) ~ r? [1 + 2rt cosd¢ + ,.3(1 + 2cos 8¢) + - - ]

where the leading term r2 is an isotropic harmonic po-

tential, and the higher-order terms have at least fourfold
symmetry. It turns out that any two-dimensional field con-
figuration that vanishes at a point produces an isotropic
harmonic trapping potential in lowest order about that
point. In the trap configurations analyzed later, the func-
tion G is always defined to have a leading term r2, and T
is used for the numerical factor.

The trapping potential model function G(x,y) is
shown in a three-dimensional plot in Fig. 1, and shows a
center well rising up to singularities at the rods. Halfway
between the rods are saddle points beyond which the po-
tential drops again. The height of the saddle points sets the
maximum energy an ion can have and still stay trapped,
i.e., the well depth. The well depth can be calculated by
setting ¢ = n/4 in Eq. (1) and finding the maximum value
of G(r, /4). The maximum occurs at r, = 3~/4 = 0.760,
and has a value of G, = 9/16\/§ = 0.3248, where the
subscript s is the saddle point.

Now that the electric and trapping potentials pro-
duced by four line charges have been calculated, a real trap
may be modeled. The electric equipotentials of the model
are plotted as contours in Fig. 2. Close to the charges,
they have a nearly circular shape. The equipotentials of
a real trap are exactly circular at the electrode surfaces.
The deviation of the model’s equipotential from circularity
is calculated by finding its horizontal and vertical “diam-
eters” and taking the difference. The electric potential V
is the real part of w, and is given by

w_ 2yt 2 -t el 1
1‘4 + y4 + 2(y2 — .’L‘2 + 1.2y2) + 1
The equipotential surrounding the charge at z =1 is to be
examined here, so first the intersection of the equipotential
with the z-axis is found by using

v _ 1+2? _
T i—z?

(3)

e
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For a fixed value of V, Eq. (3) has two positive and two
negative solutions. If the smallest positive solution is de-
noted zo, and the other positive solution is denoted z;,
then Eq. (3) produces the following relationships:

1 _ [B¥1
= =VEoT (42)

dsxl—z(,:l"""g: 2 (4b)
zo ;BE—I

CEIQ-}-.’L'l:l-{-Zg: B (4(3)
2 Zy vVBT-1

which are valid for B > 1. Notice that there is a symme-
try between B and 1/B corresponding to the symmetry
between V and —V. The case of B < 1 applies to the
region near the charges at z = 4.

Point zy corresponds to the inner surface of a rod, z;
to the outer surface of a rod, d to the horizontal diameter of
the rod, and ¢ to the center of the rod. The “rod” defined
here is a hypothetical electrode shaped so that four of them
will produce a field distribution equivalent to the four line
charges. To calculate the vertical diameter, one can use
the intercepts £yq on the line z = ¢. Using Eq. (2) results
in

2B (V(BT+2) - B) -1

2
Vo= BT -1

1
T B

The approximation is very good for B > 2, and improves as
B increases. The fractional difference of the rod diameters,
(d — 2y0)/d, scales as 1/(2B?), and is consistent with the
1dea that the equipotentials become more circular as the
line charge is approached. A curious feature of the model is
evident in Eq. (4c). The center of the rod ¢ depends on B
and does not coincide with the line charge at £ = 1. Seen
another way, the line charge sits at the geometric mean of
the inner and outer surfaces of the rod (z¢ and z;) and
only approaches the arithmetic mean as B becomes large.

So far, it has been assumed that the boundary is in-
finitely far away. This is allowed since the potential V in
Eq. (2) tends toward zero for large r. The fact that the to-
tal charge is zero assures this. Denison [3] has numerically
calculated the effect of a circular grounded boundary at
r = 1.65 for an optimized quadrupole with a radius-spacing
ratio of 0.5342. He found that the boundary changed the
optimum ratio by about 1 percent. Although a more open
trap may be more sensitive to a boundary, practical traps
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will have their boundaries at greater distances than 1.65.
Therefore, boundaries will be ignored in this treatment.

In order to use the model to calculate the parameters
of a trap, the “squashed” rods of the model are associated
with the round electrodes of the trap, and the linear di-
mensions are scaled appropriately. Dimensions of the real
trap are given in capital letters; model dimensions are in
lower case. The distance of the line charges from the trap
axis is A, and they will not be exactly at the center of the
electrodes. The inner and outer z-axis intercepts of the
trap rods are called Xy and X;, respectively. Therefore,
the dimensionless coordinates are given by

g = A (53)
X

z, = -A—‘ (5b)

A2 = XOX1 (5C)

The mercury ion linear trap has dimensions Xy = 7.62 mm
and X; = 12.7 mm, implying A = 9.84 mm (compared to
10.2 mm for the true center), o = 0.774, z; = 1.29, and

= 3.99. The horizontal and vertical diameters of the
equivalent model trap rod differ by 3 percent, providing a
good approximation to a circle.

In order to test the predictive power of the model, the
applied voltage needed for the mercury ion trap is calcul-
cated to produce a natural ion resonance frequency w of
27w x 48.5 kHz. For small displacements, the leading r?
term in the trapping potential leads to harmonic motion.
The ions are detected by amplifying the current they in-
duce on the trap rods at the natural frequency, and the
amplifiers are tuned to 48.5 kHz. The driving voltage is
applied at a frequency 2 of 27 x 500 kHz in a balanced
mode, so that the peak voltage on two opposing rods is Vj
and the voltage on the other two rods is —V, with respect
to the vacuum system. The balanced drive keeps the trap
axis at zero potential, which allows the application of only
DC bias to the endcaps. The amplitude of the applied RF
voltage is ramped until a resonance signal appears, indi-
cating that the natural frequency of the trap matches the
frequency to which the amplifiers are tuned.

Calculating the required applied voltage uses the fact
that on the inner surface of the rod zg, the electric poten-
tial V equals the applied voltage V4, so that

V _ Inj(1+2%)/(1-2%)] h|(1+2?)/(1-2?)]

Vo o In|(1+23)/(1-23) In B




and the electric field is

T'VEG(z,y)

BF = Ay

The ponderomotive trapping potential ¥ is given by

eE? Te?VEG(z,y)

V= I = Im 2 (Aln BY? ®)

where m is the mass of the ion [5]. Using the harmonic
approximation for G leads to an expression for the natural
resonance frequency

\/-I.:EV()
W= —————— (M
V2 mQ2A%In B

For mercury isotope 199 and the trap parameters given
above, Eq. (7) predicts a peak drive voltage of 93.7 V. The
experimental value is 100 £ 5 V, giving agreement almost
within experimental error. The well depth can also be
calculated using Eqs. (6) and (7) as

G, mw?A?

yielding a value of 3.00 eV for the parameters here.

lll. Model for a Two-Rod Trap

The simplicity of this model makes it useful for ana-
lyzing other two-dimensional trap geometries. Any system
that produces a point with a vanishing electric field can
potentially trap ions. The simplest system consists of two
rods driven by the same voltage with respect to a dis-
tant boundary. This configuration has a zero field point
midway between the two rods. A trap of this type was
demonstrated with oil droplets by Straubel [6] very early
on, and may be of use in frequency standards due to its
wider viewing angle. The model for this trap is two equal
negative line charges at z = £i. The complex potential is

w=In(z2 +1)

and the geometric form of the ponderomotive potential is
r2

G(r.¢) = 4 4 2r2cos2¢ + 1

with T = 4. Contours of the electric equipotentials and a
plot of the ponderomotive potential are shown in Figs. 3
and 4. The two saddle points are on the z-axis at r, = 1,

and have the value G, = 1/4. The electric potential can
be written as

eZZV - 1:4 +y4 + 2(1‘2 _ y2 +z2y2)+ 1= B? (9)

One can calculate the intercepts of an equipotential on the
y-axis around the charge at z = i and obtain relations
analogous to those of the four-rod trap:

Yo=V1-—-B (10a)

v =vVI+ B (10b)

for B < 1. Combining Egs. (10a) and (10b) to calculate
the scaling law for a real trap results in 24%2 = Y + Y7,
where Yy and Y; are the inner and outer surfaces of the
rod. For a trap with rods the same size and spacing as
two opposing rods of the mercury ion trap, A = 10.5 mm.
This time the line charge is more distant than the rod
center (10.2 mm). A calculation of the diameter difference
gives a deviation from roundness of 3 percent.

In order to calculate the applied voltage, the surround-
ing boundary must be taken into account, because the bars
must be driven with respect to something. According to
Eq. (9) and Fig. 3, the equipotentials for large r become
roughly circular with a value of 2Inr, and it is assumed
that the boundary follows one of these contours. The po-
tential on the trap axis is zero and the potential on the
rod is In B. The applied voltage will be proportional to
2Inr — In B, where r = R/A and R is the radius of the
surrounding boundary. The trapping potential can then
be written as

Te?VEG

¥= 4mQ2A2(2Inr — In B)?

The dimensions of the vacuum system correspond to a
value of 2.5 for . In order to duplicate the natural res-
onance of 48.5 kHz with the two-rod trap, a peak drive
voltage of 364 V is necessary, an increase by a factor of 3.9
over the four-rod trap. The well depth is still governed by
Eq. (8), and depends on the boundary only through the
voltage necessary to maintain w. The well depth then is
2.63 eV. The price paid for an increased viewing angle is
a larger drive voltage and a slightly smaller well depth.

An added complication with this trap is that the elec-
tric potential at the trap axis is now oscillating with respect
to the vacuum system at the drive frequency. This makes
an added AC bias to the endcaps necessary to keep them
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at a constant potential above the trap axis. Straubel did
not use endcaps, but relied upon fringing fields from the
ends of his rods for axial confinement.

IV. Models for a Three-Rod Trap

Although the viewing angle is larger in the two-rod
trap, the trapping point is still between the two rods. It
may be desirable for some applications to trap well out-
side the electrode structure. This becomes possible with a
three-rod trap. A simple example of a three-rod trap model
consists of a positive line charge at the origin flanked by
two equal negative line charges on the real axis at z = %1.
The resulting complex and ponderomotive potentials are:

(=)
w=1In
z

rt 4+ 2r2cos2¢ + 1
r2(rf — 2r? cos2¢ + 1)

and

|FJ? = (1)

The electric field vanishes at z = %i, and these are the
trapping points. The electric and trapping potentials are
shown in Figs. 5 and 6.

If Eq. (11) is expanded about the trapping point z = 1,
then T = 4. The expression for G is too complicated to
be very useful. The lowest saddle point can be found from
Eq. (11) at r, = V2 + V5 = 2.058, and ¢ = m/2 where
G, = 0.0217. This gives a well depth of 200 meV for the
parameters used here. The question of the applied voltage
is slightly more complicated than in the previous two cases.
Since the total charge is not zero, the boundary must again
be included in the calculation. There are now three volt-
ages involved: the central rod Vi, the outer rods V2, and
the boundary V3. The ratios between these voltages can
be calculated from the expression for the potential

oV Tyt 2y -ty 4

2
-’82+y2 B

and the various intercepts. For the center rod (B; > 1),
the relation between the B value and the dimensionless
diameter is
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and for the outer rods (B < 1)

ds = B,
and

BZ
a=\l+ 3

Once again, the intercepts of the outer rod obey the rela-
tions of Eq. (5). The boundary is again assumed to con-
form to a long-range equipotential at dimensionless radius
r with value Inr. All the potentials can be offset by Inr
to keep the boundary at ground and obtain the following
form for the applied voltages:

Wi In(By/r)
Vo~ In(By/7)

Using a value of 2.5 for 7 and the same rod diameters and
spacing as before obtains peak applied voltages of 49.4 V
and —214 V for V] and V;. A suitably tapped transformer
could be used to provide these drive voltages. Alterna-
tively, the ratio of the inner and outer rod diameters could
be adjusted to force B;B; = r? so that V; = —V,. Even
with this simplification, an additional AC voltage is nec-
essary to bias the endcaps as in the two-rod case.

The influence of the boundary can be removed by
choosing the total charge to be zero. This can be ac-
complished by doubling the center charge. Unfortunately,
there is no trapping point with this configuration while the
charges are in a line. Moving the center charge down along
the imaginary axis to z = —ib creates a trapping point at
z = i/b. The case of b = 1 has been analyzed, and the re-
sults are shown here. The electric and trapping potentials
are plotted in Figs. 7 and 8. The scaling factor T' is 1/4,
and the saddle point is on the y-axis at y, = 1.839 with

"G, = 0.0728. The electric potential is

(2 +y? + 2y + 1)

and the r intercepts of the outer rods still follow the re-
lationships of Eqgs. (4) and (5), with B replaced by 1/B,
(for By < 1). The y intercepts of the lower rod obey the
relationship below (for By > 1):

i



and Eq. (5). Once again, the voltages applied to the rods
will not be equal and opposite unless the diameters are
adjusted so that B; = 1/B>. The endcaps need only DC
bias because the potential is zero at the trapping point.

The small value of T, which is 1/4, makes the drive
voltage for the outer rods eight times that of the four-rod
trap for the same ion resonance frequency. This fact, plus
the small well depth, may limit the usefulness of this trap.
In both three-rod traps, however, the low saddle point lies
only on one side of the trapping region. The potential
barrier on the opposite side is much higher. These traps
may be useful for trapping macroscopic particles, where
gravity plays an important role. The trap rods could be

oriented horizontally so that the low saddle point lies above
the trapping region.

V. Conclusions

This article has presented a simple model for linear
jon traps that permits the accurate calculation of trapping
parameters and gives a detailed picture of the potentials.
The model was used to analyze some new trap geometries,
and their advantages and disadvantages were discussed.
Each trapping geometry is characterized by the two pa-
rameters ' and G,, which determine the dependence of its
natural resonance frequency and well depth on the applied
RF voltage and trap dimensions.
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Microwave'OscilIator With Reduced Phase Noise by
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Signals With Suppressed Carrier
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This article develops and analyzes oscillator configurations which reduce the
effect of 1/f noise sources for both direct feedback and stabilized local oscillator
(STALO) circuits. By appropriate use of carrier suppression, a small signal is gen-
erated which suffers no loss of loop phase information or signal-to-noise ratio. This
small signal can be amplified without degradation by multiplicative amplifier noise,
and can be detected without saturation of the detector. Together with recent ad-
vances in microwave resonator (Js, these circuit improvements will make possible
lower phase noise than can be presently achieved without the use of cryogenic de-

vices.

l. Introduction

Phase fluctuations in microwave oscillators show a
characteristic 1/f3 spectral density for frequencies very
close to the carrier. The spectral density Sy(f) can be
expressed in terms of rad? per Hz bandwidth at an offset
frequency f from the carrier. At larger frequency offsets
(f > 10 kHz), fluctuations decrease more slowly, typ-
ically approaching a more or less constant value for fre-
quencies of 100 kHz and above. This article is concerned
with reduction of the fluctuations very close to the carrier
by the use of circuit techniques not previously applied to
microwave oscillators.

In order to achieve a microwave signal with the lowest
possible noise at all offset frequencies, a variety of tech-
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nologies is presently used [1, 2, 3]. Typically, high stabil-
ity for small offsets (f < 100 Hz) is obtained by locking
the microwave oscillator to a harmonic of a low-frequency
(5 MIIz) bulk acoustic wave (BAW) quartz-crystal oscilla-
tor. For offset frequencies in the range of 100 Hz < f <
10 kIlz, further stabilization may be provided by a surface
acoustic wave (SAW) oscillator operating at ~ 500 MHz.
The microwave oscillator itself provides the best possible
stability only for relatively large offset frequencies (f >
10 kHz).

While all the sources listed above show 1/f3 type
phase fluctuations for small values of offset frequency f,
the microwave oscillator itself shows by far the highest
noise. This is due to two contributing factors: the low
@ available for microwave resonators and the large 1/f



phase noise in available microwave devices. (The action
of the oscillation loop converts this 1/f phase noise into
1/f frequency noise, which is mathematically equivalent
to 1/f3 phase noise [1, 16].) Thus, while BAW and SAW
quartz crystals show Qs of 10° and 10° respectively, mi-
crowave cavities and dielectric resonators are limited to
Qs in the range 1-3 x10*. In like manner, active devices
which are available at the lower operating frequencies of
the quartz devices show 1/f phase noise of —140 dB per
Tz or lower at an offset frequency of f = 1 Hz, while the
best 8-12 GHz (X-band) amplifiers have noise of —120 dB
per Hz [13, 14].

Recently, a new type of microwave resonator has been
demounstrated with @s 10 to 1000 times larger than pre-
viously available [4-11]. This sapphire whispering-gallery-
mode resonator allows the intrinsic @ of the sapphire itself
to be utilized by isolating the fields to the sapphire element
and away from lossy metallic container walls. These res-
onators have shown Qs of 2x 10° at room temperature and
3 x 107 at 77 K. Tests of an 8-GHz oscillator stabilized by
such a sapphire resonator (a stabilized local oscillator, or
STALO) show 1/ noise 10 dB lower than previously re-
ported for any 8-12 GHz (X-band) source and only 22 dB
higher than the best quartz-crystal stabilized oscillator [9,
12]. If the device noise in this oscillator could be reduced
by 20 dB or more, the need for quartz stabilization would
be eliminated, and a new oscillator capability would be-
come available.

The following sections describe two substantially dif-
ferent implementations of an idea in which negative feed-
back in the oscillator is generated by means of a sup-
pressed-carrier microwave signal. In one implementation,
the signal is fed to a semiconducting phase detector to
enhance its sensitivity while avoiding saturation. In this
STALO configuration, phase-detector noise is effectively
reduced by the enhanced sensitivity. In the second im-
plementation, direct RF feedback of a signal with sup-
pressed carrier induces both oscillation and negative phase
feedback. In this case, the degree of improvement in 1/f
phase noise over that which characterizes the amplifier it-
self is equal to the degree of negative feedback which can
be achieved without oscillation in unwanted modes.

A comparison of the two implementations shows the
second (direct RF feedback) to be somewhat trickier in
concept (involving both negative-phase feedback and
positive-amplitude feedback in the same loop), and sim-
pler in realization. Conditions of stability require the use
of a filter with a performance that is expected to limit
the usable loop gain to the 20-30 dB range. The STALO-
type implementation, while more elaborate, is somewhat

less tricky, and should allow larger gains to be used. Both
should show crystal-oscillator-type performance in a room-
temperature 10-GHz (X-band) oscillator using a whisper-
ing-gallery-mode sapphire resonator with an intrinsic Q of
2 x 105, and allow dramatic improvements in the state of
the art with cooled resonators and higher Qs.

II. Background

Figures 1 and 2 show conventional microwave self-
excited oscillator and STALO configurations, together
with an identification ¢f the in-oscillator and oscillator out-
put noise spectral densities. In the self-excited oscillator
shown in Fig. 1, the oscillation condition requires that the
phase shift around the complete feedback loop comprising
the amplifier, resonator, and interconnections be a multi-
ple of 2r. With this condition satisfied, any phase fluc-
tuation in the microwave amplifier must be accompanied
by an opposite shift of equal magnitude in the resonator.
For slow phase fluctuations (f < v/Q), the characteris-
tic phase slope of the resonator §¢/6v = 2Q/v implies
a corresponding slow fluctuation in the frequency of the
oscillator. Here f represents the fluctuation frequency, v
the microwave frequency, @ the quality factor of the res-
onator, and ¢ the phase of the microwave signal. In this
way, a power spectral density of phase fluctuations for the
amplifier S4(f) |amp results in oscillator output frequency
noise

Sy (f) lowr = (2Q)2S4(£) lamp

or the mathematically equivalent output phase fluctuations

v

50 s = @2 (5) SolD lermy )

where y = §v/v is the fractional frequency deviation.

Figure 2 shows the schematic diagram for a STALO
in which the frequency variations of a noisy microwave
source are cancelled by a feedback loop that detects the
consequent phase shifts across a high-Q resonator to gen-
erate a frequency-correction voltage. The phase from the
reference loop is adjusted to produce the proper sign of
the correction voltage and attain maximum sensitivity by
operating in the high slope region of the mixer output ver-
sus reference phase relation. In the limit of large loop gain,
stable equilibrium requires that the phases at the two input
ports of the mixer be in quadrature (mixer output = zero).
A significant advantage of the STALO is that the proper-
ties of the feedback loop are particularly easy to control,
since the signal is mixed down to baseband (near zero fre-
quency). This allows the use of active filters with narrow
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bandwidths and sophisticated response shapes which are
not possible at microwave frequencies. A second advantage
is that the 1/ f noise for X-band mixers (—135 dB/ f per Hz
at 10 GHz) [15] is better than that which is available from
the best amplifiers (-110 to —120 dB/f) [13, 14]. The
analysis from the self-excited oscillator can be adapted to
the STALO by noting that the only difference is that the
phase detection and correction has been moved from the
resonator in Fig. 1 to the mixer-amplifier-oscillator combi-
nation in Fig. 2. The phase noise of the RF amplifier of
Fig. 1 is replaced by that of a mixer. Consequently, the
output phase fluctuations are described by

v 2
So(f) lowt = (2Q)2 (7) So(f) Imis

As a consequence, the performance of a direct-feedback
oscillator with an amplifier having 1/f noise of ~120 dB
per Hz at 1 Hz (S4(f) lamp = 10712/ f rad? per Hz) is

Se(f) lour = 107 12(2Q) 2 (;_z)

while a STALO using a mixer with S4(f) |miz = 107133/
rad? per Hz will be 15 dB quieter. These device noise lev-
els represent the quietest components presently available,
giving a clear advantage to the STALO configuration.

lll. Oscillator Configurations for
Reduced Noise

Three new oscillator configurations for low phase noise
are detailed in this section. The first two are STALO con-
figurations that reduce the effect of mixer noise by increas-
ing its sensitivity by the use of a suppressed-carrier signal.
Of these two, the first achieves increased sensitivity by op-
erating the high-Q resonator at higher power than would
otherwise be possible. In the second, a similar effect is
achieved by use of a low-level RF amplifier. The third
oscillator configuration uses direct RF feedback of a sort
that simultaneously achieves positive-amplitude feedback
and negative-phase feedback. In this way excess gain of
the amplifier is used to reduce its effective phase noise.

The STALO shown in Fig. 3 forms the basis for the
new designs. It differs in implementation from Fig. 2 in
that the signal from the cavity to the mixer is not taken
from a second coupling port but is instead taken from the
signal reflected from the input port. A circulator separates
this signal from the forward-driving signal. At critical cou-
pling and on resonance, the returned signal is identically
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zero. However, it is the superposition of two equal signals,
one of which emanates from the cavity, and a second, re-
flected signal which is derived from the driving signal with
a constant phase shift. This reflected signal does not sig-
nificantly affect the operation of the mixer at resonance
since it is in quadrature with the signal at the other mixer
port. Thus the two STALOs will have approximately iden-
tical performance. Figure 4 shows the returned signal for
small errors in local oscillator frequency. While the ampli-
tude goes through zero on resonance, a phase reversal takes
place in which the in-phase signal on one side becomes
out of phase on the other, allowing a linear dependence of
mixer output voltage on the frequency error, as required
for effective feedback. Instead of viewing the mixer as a
phase detector, it is seen as projecting the component of
the signal at the r input onto the phase of that at the [
input.

A. STALO Design for Enhanced Phase
Detector Sensitivity

In this configuration, enhanced sensitivity in the phase
detector is achieved by means of relatively high power in
the high-@ resonator. It has the advantages of simplic-
ity and absence of any amplifier to introduce added phase
noise if carrier suppression is incomplete. A disadvantage
is that power limitations in the microwave source or high-@Q
resonator restrict the available improvement factor.

As previously discussed and as shown in Fig. 5(a), sup-
pression of the carrier at the r port of the mixer in Fig. 3
has only incidental consequence regarding mixer sensitiv-
ity, since the suppressed part of the signal is in quadrature
with the reference signal at the ! port. (The part of the
signal due to frequency variations, +6v, is in phase with
the reference and so is detected in any case.) However,
things are not quite identical to the conventional STALO
shown in Fig. 2. Suppression of the carrier at the r port
allows the power to the high-Q) resonator to be increased
without saturating the mixer. This increased power results
in an enhanced sensitivity of the mixer output voltage to
frequency variations +év.

Figure 6 describes such a circumstance. Besides the
increased power levels in oscillator and resonator, the only
difference from Fig. 3 is an appropriately weaker coupling
to the mixer’s [ port. Mixers typically saturate at signal
levels on the order of 20 milliwatts, while frequency sources
and resonators can operate at power levels up to 1 watt or
even higher. The resultant increase in sensitivity of up to
17 dB reduces the consequence of mixer noise by the same
factor. For a mixer with flicker noise of —135 dB per Hz at
1 Iz offset, the effective noise could be reduced to a value
of —152 dB per Hz.



B. STALO Design Using RF Amplification

Figure 7 shows a further modification of the STALO
which can result in improved performance. Here the small,
nominally zero signal returned from the resonator is ampli-
fied before it enters the mixer. Two effects of this addition
are easy to understand. The loop gain will be increased by
the added gain, an effect which may be compensated for in
the design of the baseband amplifier. Secondly, the gain of
the amplifier will increase the sensitivity of the mixer out-
put to phase error in the resonator without significantly
affecting mixer noise. Thus the effective mixer phase noise
is reduced by the amount of amplifier gain. This can be a
very substantial improvement.

The third effect of this modification is a little more
complicated. Since amplifiers are somewhat more noisy
than mixers (—120 dB versus —135 dB at 1 Hz offset as
previously discussed), a crucial point is the proper analysis
of the contribution of amplifier noise. The kind of noise
under discussion is not additive noise, which would be inde-
pendent of any large signal also present, but instead is mul-
tiplicative noise, which transforms a large signal by slightly
modifying its amplitude and phase. (Additive noise in
good amplifiers is insignificant except at offset frequencies
f >~ 10 kHz where the 1/f multiplicative noise is rela-
tively small.) Figure 5(a) shows in phasor form the cavity
signals with and without carrier suppression corresponding
to the oscillators shown in Figs. 3 and 2, respectively. The
added signals due to small frequency variation in the local
oscillator are also shown. These added signals are detected
by the mixer in order to allow feedback circuitry to can-
cel the frequency variations. The effect of multiplicative
phase noise in the amplifier for the two cases is shown in
Fig. 5(b). It is clear from Fig. 5(b) that this noise source
generates signals which are indistinguishable from those
caused by actual frequency variations, and which are due
only to the presence of the coherent carrier. Thus a reduc-
tion in amplifier noise is effected which is proportional to
the degree of carrier suppression of the microwave signal
at its input.

Oscillator phase noise is thus determined by a com-
bination of mixer noise (reduced by amplifier gain) and
amplifier noise (reduced by the degree of carrier suppres-
sion). For example, if mixer noise of —135 dB/f per Hz
were reduced by 25 dB of amplifier gain to —-160 dB/f
per Hz, and amplifier noise of ~120 dB/f per Hz were re-
duced by 40 dB of carrier suppression to the same value,
the combined noise of —157 dB/f per Hz would determine
oscillator performance. For a loaded @ of 10,000 (intrinsic
@ = 20,000), this would allow an oscillator phase noise
of S f)|ose = —43 dB/ f3 per Hz, a value superior to any

room-temperature microwave oscillator to date. For room
temperature and thermoelectrically cooled sapphire res-
onators with Qs of 10° and 10%, performance would be
superior to that of any available source at Sgf)losc =
—63 dB/f2 per Hz and —83 dB/f3 per Hz, respectively.

C. Oscillator With RF Feedback

1. Noise reduction. Figure 1 shows a conven-
tional microwave oscillator excited by direct RF feedback.
As discussed earlier, any slow phase shift in the amplifier
is converted by the feedback process into a frequency shift
of the oscillator output as required by the condition of con-
stant phase shift around the loop (¢1,0p = 2n7), with the
conversion constant depending on the resonator . The
total signal returned from the input port to the resonator
is the superposition of two parts, a reflected constant sig-
nal equal in magnitude to the input signal, and an emitted
part proportional to the instantaneous RF amplitude in
the resonator. In the previous section, the critically cou-
pled case was discussed, where on resonance the net re-
turned signal was identically zero. If instead the cavity is
slightly over-coupled, so that the signal emitted from the
resonator is larger than the reflected signal, the net signal
returned from the resonator will not be zero on resonance
but will have a small, constant value. Figure 8(a) shows
the configuration for an oscillator in which the small re-
turned signal is amplified and returned to the cavity to
induce oscillation. RF feedback of a phase and magnitude
that allows oscillation on resonance will also induce neg-
ative phase feedback that reduces the effect of amplifier
phase fluctuations on the oscillator frequency.

Figure 9(a) shows these various signals in phasor form
for the case Q > 1, with weak magnetic coupling to the
resonator achieved by means of an iris at the end of a
waveguide or by a shorted coaxial line. Shown are the
forward signal voltage amplitude f, reflected signal ¥ (di-
rectly reflected by the coupling port), emitted signal €,
and net returned signal @l, as shown for the condition of
resonance (test frequency = resonator frequency.) Signals
are measured at the effective plane of the weak coupling
port. For frequencies significantly outside the bandwidth
of the resonator, the net returned signal is approximately
equal to T; thus, out-of-bandwidth oscillation is prevented
by the phase reversal between i1 and T. In order to achieve
oscillation at resonance, the gain and phase shift around
the loop must regenerate f from fi. For the slightly over-
coupled case shown, this corresponds to a net phase shift
207, and gain to overcome the signal amplitude reduction
| /¢ |. While small losses due to transmission through
various circuit elements must also be made up by the gain
element, they can be ignored for this analysis.
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Intrinsic and external Qs, @; and @Q., describe the
effect of resonator and coupling losses and combine to form

the loaded @
Ql_l — Q,_l + Q:l

which defines the operational bandwidth of the resonator.
Using standard circuit analysis, the amplitude of the res-
onator response to the forward signal can be written:

129

_ 2q . 1
g+1 \/1+(2Q16V/V02)

where ¢ = @Q./Q. is a loading factor, v, is the resonance
frequency, and év is the frequency deviation from reso-
nance. The phase of the resonator response is similarly
given by

|

)

lacl!

tan(g) = 21 (3)
Vo
for a slope at resonance of
6¢ _ 2Qu
_- = 4
v Vo (4)

Now calculate the amplifier gain required for oscilla-
tion at resonance (6 = 0). From the nature of the cou-
pling,

r=-f (5)

and from the equation above

e e w_7oq—1
=7Ff+€=1fx
o ¢ g+1
requiring a gain of
|f| g+1
CG=r—m/=—— 6
5~ q=1 (©)

for oscillation. The over-coupled condition depicted in
Fig. 9 corresponds to ¢ > 1. If ¢ = 1 + &¢, the gain
requirement can be rewritten as
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G‘:E-’rl (7

For the oscillator shown in Fig. 1, a small phase shift
¢ in the amplifier gives a corresponding phase shift —4
across the resonator, with a resultant frequency shift given
by the phase slope in Eq. (4). The configuration shown in
Fig. 8(a) gives a reduced resonator phase shift and thus
reduced frequency shift. This reduction is now calculated.
Figure 9(b) shows the self-consistent phasor diagram for
the oscillator of Fig. 8(a), with a slight amplifier phase
shift 4. The instantaneous frequency is determined by the
smaller angle ¢, together with the resonator phase slope
2Q1/v,; thus, the ratio ¢ /6 describes the phase noise reduc-
tion of Fig. 7 compared to Fig. 1. The diagram is oriented
so that the direction of e is constant. Graphically solving
o = &+ I shows that the effect of a rotation § between
it and f due to the amplifier gives an angle ¢ between f
and & The angle ¢ in turn determines the frequency shift
via Eq. (3). A straightforward evaluation for the geometry
shown gives

i’

6 =¢+sin? (!—-— x sin(¢))

||
which can be approximated in the limit of small angles to
give
1
¢/0 = T (8)

l+|—

This approximation will hold to high degree of accuracy
because of the very small value of the phase fluctuations
involved. Using Egs. (6) and (5), Eq. (8) can be rewritten
in terms of the amplifier gain as

=11 Bali

1
0 ——
¢/~ 15

The factor ¢/6 describes the reduction in phase vari-
ation across the cavity compared to that across the am-
plifier. It also describes the improvement in performance
due to the circuit in Fig. 8(a). Combining this result with
Eq. (1), the phase-noise performance of the oscillator is

Soll) lout = (8/0)2(2Q) (;) So(f) lamp

For example, for G = 10 (20 dB of amplification), ¢/8 is
1/11 (22 dB of noise reduction). If the amplifier has noise



of —120 dB/f per Hz (or Sg(f) lamp = 1071%/f rad® per

Hz), oscillator performance will be

V2
401 e =08 x 1074200 (%)

which for a frequency of 10 GHz and @; of 10° gives

So(f) lour = 2 x 10-5/f3

or —47 dB per Hz at f = 1 Hz offset frequency. For this
same case, Eq. (7) shows that the degree of over-coupling
required is

or
-g—:— 1-{-6q=%1
and
Q;:——:ll—_1=Q.-x—1—=0.45xQ.~
Q-1+ Q; 11/9+1

2. Loop stability. The oscillation condition for the
direct RF feedback configuration is such that the directly
reflected signal has a net phase shift of 180 deg with re-
spect to the signal emitted from the resonator. Thus the
loop will not oscillate at frequencies outside the passband
of the stabilizing resonator (where very little signal is ab-
sorbed or emitted by the resonator), unless the phase is
shifted by other elements in the circuit. Unfortunately,
the path length of the circuit alone is sufficient to add
such a shift if the frequency is slightly varied. Thus, for a
path length of 10X, a 180-deg phase shift will occur with
a 5-percent frequency change. Even worse, at these +5-
percent frequencies, the loop gain will be nearly G, a value
much greater than the loop gain at the desired mode (ap-
proximately unity). These oscillations do not involve any
high-Q resonance, and can only be prevented by the in-
troduction of a filter whose function is to reduce the gain
(as the frequency is varied away from v,) to a value less
than unity by the time the phase shift due to all sources
reaches 180 deg. Because each stage of a filter introduces
a phase shift of &~ 90 deg by the time substantial attenu-
ation is achieved, a single-stage filter must be used. The
phase margin for the rest of the circuit is thus reduced to
=~ 90 deg by the filter’s presence. Because a single-stage fil-
ter attenuates relatively slowly as the frequency is varied,

a narrow bandwidth is required. For the example here,
with a path length of 10X and for G = 10 (20 dB), fil-
ter attenuation of 20 dB must be achieved at a frequency
offset of 2.5 percent, where the circuit length alone intro-
duces a 90-deg shift. This requires a filter bandwidth of
~ 0.25 percent, a value that can be achieved with low loss
using conventional techniques.

The expressions for amplitude response and phase
shift for a single-stage filter are identical to those already
presented in Egs. (2) and (3). The shift due to a transmis-
sion line is given by

ae(3)(2)

where p is the effective path length. Figure 8(b) shows an
oscillator with the added filter; Figs. 10 and 11 show the
amplitude and phase response for a single-stage filter with
Q@ = 3000, and the added phase due to an effective path
length of 1 m. For Fig. 11, an attenuation of 35 dB is gen-
erated before the total phase shift reaches 180 deg, thus
allowing < 35 dB of loop gain for the reduction of ampli-
fier phase noise. It can be seen from the figures that the
attenuation of this filter is nearly 35 dB by the time the
total phase variation due to filter and transmission path
reaches 180 deg. While 3000 is a relatively high @ for a
single-mode filter, it can be attained with low loss. It is
clear that usable gain and consequent usable noise reduc-
tion of 20 to 30 dB can be achieved with this technique.

IV. Conclusions

Typical low-noise 10-GHz (X-band) oscillators use a
single transistor or other active semiconducting device for
excitation; while a more elaborate STALO configuration is
used for the lowest possible phase noise. With the develop-
ment of sapphire whispering-gallery-mode resonators with
Qs above 10° to 107 at 10 Gz, the possibilities have been
considerably enhanced. Whereas lower frequency SAW or
BAW quartz-crystal oscillators had far lower noise than
their higher frequency counterparts, they are rivalled by
an X-band oscillator using the sapphire resonator [9]. To-
gether with the improved oscillator circuits developed here,
such a resonator may make possible close-in phase noise
lower than that of any noncryogenic frequency source. Fur-
thermore, cooling by means of thermoelectric coolers or
liquid nitrogen may make practical frequency sources with
greatly reduced phase noise.

New design configurations for STALOs and direct RF

oscillators allow reduced phase noise in comparison to con-
ventional configurations. By appropriate use of carrier sup-
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pression, a small signal is generated which suffers no loss
of loop-phase information or signal-to-noise ratio. This
small signal can be amplified without degradation by mul-
tiplicative amplifier noise, and can be detected without
saturation of the detector.

Figure 12 shows phase-noise calculations for an im-
proved sapphire whispering-gallery-mode oscillator and

STALO for configurations as shown in Figs. 8 and 7. Use
of a cryogenic sapphire resonator allows a further improve-
ment of 20 to 43 dB. Quality factors are assumed to be
Qi = 2 x 10° at room temperature, Q; = 2 x 10% at 170 K,
and Q; = 3 x 107 at 77 K. Noise plots for various con-
ventional 10-GHz frequency sources are also shown. The
multiplied 5-MHz crystal oscillator presently represents the
best performance available at X-band.
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Fig. 1. Block diagram of simple oscillator with direct RF feedback.
Output phase nolse is derived from amplifier noise logether with
phase slope of resonator; phase is adjusted to give 2 n 7 radlans
around loop at the center of the sapphire resonator passband.
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Fig. 2. Block diagram of stabllized local oscillator (STALO) with double-balanced mixer type
phase detector. Mixer nolse plays the same role as amplifier nolse in Fig. 1; phase Is adjusted
to glve / and r signals In quadrature.
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Fig. 3. STALO with different configuration but functionally identical to that of Fig. 2. Signal
returned from resonator is superposition of the resonator signal and the constant reflected

signal.
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Fig. 4. RF envelope of returned signal for critical coupling as
frequency v is varied. Phase Inversion at center allows linear de-
pendence In mixer output with frequency for arbitrarily small fre-
quency errors.
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Fig. 5. Phasor diagram showing the effect, with and without car-
rier suppresslon, of (a) frequency error and (b) amplifier phase
noise on the RF resonator signal. Also shown are the constant
carrier suppression signal and mixer reference signal. Note that
the effect of frequency error on the component of the RF resonator
signal in phase with the reference Is unchanged by 20 dB carrler
suppresslon, while the effect of amplifier phase noise Is reduced

by 20 dB,



HIGH-POWER
MICROWAVE
OSCILLATOR

OQUTPUT

HIGH POWER CIRCULATOR

A

LOW POWER

O

PHASE (NOMINALLY ZERO)

DETECTOR

AMPLIFIER-INTEGRATOR

HIGH-Q
RESONATOR
(CRITICALLY

COUPLED)

CARRIER-SUPPRESSED SIGNAL

Fig. 6. Configuration to allow increased power into the high-Q resonator without saturating the
mixer; the resultant increase in sensitivity of up to 17 dB reduces the consequence of mixer
noise by the same factor.
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Fig. 7. STALO configuration for reduced phase nolse. Critical coupling to resonator and
operation very near v, allow insensitivity to phase noise of amplifier; amplifier galn allows
reduction of phase detector noise.
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Fig. 9(a). Phasor dlagram showing forward, reflected, emitted, and

net signal amplitudes f, T, €, and 11, for a slightly over-coupled
resonator at resonance.
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Fig. 8. Configuration of reflection oscillator: (a) with direct RF
feedback, (b) added filter prevents spurlous oscillation.

Fig. 9(b). Self-consistent phasor diagram
showling the effect of amplifier phase shift
& on operation of the oscillalor shown in
Fig. 7. Feedback gain is the same as in

Fig. 9(a).
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Fig. 10. Amplitude response of the single-stage filter in Fig. 8(b).
More stages cannot be used because the added phase shift would
allow oscillation within the filter bandwidth.
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Fig. 11. Phase response of the single-stage filter together with
phase response due to path lengths, for path length of 1 m, Q=
3000, and v, = 8 GHz. Path-length Induced phase shift would be
greater for lower Q or a longer path length.
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Fig. 12. Phase-noise caiculations for improved sapphire whispering-gallery-mode osclllator
and STALO shown In Figs. 8 and 7. Use of a cryogenic (170 K to 77 K) sapphire resonator
allows further improvement by 20 to 43 dB.
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This article presents an analysis of the effect of the linewidth of a single-
Iongitudinal-mode laser on the frequency stability of a frequency reference transmit-
ted over single-mode optical fiber. The interaction of the random laser frequency
deviations with the dispersion of the optical fiber is considered to determine the-
oretically the eflect on the Allan deviation (square root of the Allan variance) of
the transmitted frequency reference. It is shown that the magnitude of this effect
may determine the Iimit of the ultimate stability possible for frequency reference
transmission on optical fiber, but is not a serious limitation to present system per-

formance.

l. Introduction

Ultrastable fiber optic transmission of hydrogen maser
reference signals is presently operational at the Goldstone
facility of the NASA/JPL Deep Space Network [1]. This
capability supports radio science experiments such as Con-
nected Element Interferometry (CEI) by enabling phase-
coherent arraying of widely separated antennas in real
time. Also, distribution of a centralized maser reference
throughout the entire complex eliminates the need for a
hydrogen maser frequency standard at each Deep Space
Station, with substantial cost savings and increased relia-
bility.

A reference signal produced by a hydrogen maser fre-
quency standard is presently distributed over distances up
to 29 km, with differential fractional frequency stability
é} ~ 10~ 15 for 1000-second averaging times. Although the
present fiber optic distribution capability is as stable as the
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hydrogen maser frequency standard, the ideal distribution
system should be an order of magnitude more stable than
the distributed signal. With the promise of trapped-ion
frequency standards [2] and superconducting cavity masers
[3] that will both provide more stable frequency references,
fiber optic link stability of 10~18 at 1000 seconds will be
required for stable distribution.

The demanding requirements that a frequency refer-
ence distribution system must meet necessitate the exam-
ination of all sources of instability at levels far beyond the
needs of typical analog and digital fiber optic communi-
cation systems. Presently, laser source amplitude noise
and thermal variations of the optical fiber have been iden-
tified as the limiting factors to distribution system per-
formance. Improved lasers with lower intensity noise and
single-longitudinal-mode operation will be employed in the
near future. A thorough examination of fiber optic sys-



tems and components has indicated that laser frequency
deviations may limit system performance as lower ampli-
tude noise lasers become available. However, a quanti-
tative analysis of the effect of laser frequency noise on a
narrow-band frequency distribution system has not previ-
ously been performed.

The present analysis theoretically estimates the effects
of laser frequency fluctuations on the amplitude and phase
stability of a frequency reference transmitted on single-
mode optical fiber. An expression for the phase noise spec-
tral density of the modulation signal due to the frequency
noise spectral density of the laser is derived and then used
to calculate the expected Allan deviation of the trans-
mitted reference signal. The laser-induced phase noise is
shown to depend on the modulation signal frequency, fiber
length, and fiber dispersion, as well as the magnitude of
the laser frequency fluctuations. It is shown that the differ-
ential frequency stability of a single-mode fiber optic link
is fundamentally limited by laser frequency noise. Thus,
as laser intensity noise is reduced, the laser frequency noise
will limit transmission stability.

Il. Fiber-Laser Interaction

The dispersion of optical fiber causes various optical
frequencies to travel with different velocities. Optical car-
rier frequency deviations couple with the dispersion of the
fiber to produce random phase deviations in the envelope
of a modulation signal, thereby degrading its phase sta-
bility. Optical fiber acts as a frequency discriminator to
translate random frequency deviations of the laser into
random phase deviations of the RF modulation envelope.
Although every effort is made to operate the laser at the
minimum dispersion point of the fiber, the slope of the
fiber index of refraction versus wavelength is typically not
zero. As the laser frequency deviates, the signal experi-
ences changes in the fiber index of refraction that cause
phase shifts of the modulation envelope.

Under bias current modulation, a semiconductor laser
exhibits changes in wavelength, or chirp, that are syn-
chronous with the bias modulation due to the change in
refractive index of the laser gain medium [4]. Lasers also
exhibit random frequency fluctuations due to the quantum
phenomenon of electron-hole recombination in the gain me-
dia, with an attendant change of refractive index [5]. Tem-
perature excursions of the laser diode also affect the index
of refraction and the lasing wavelength, but with time con-
stants from minutes to hours.

In digital transmission systems, laser chirp is the pre-
dominant limit on transmission distance [6, 7]. These wide-

band systems are sensitive to phase deviations of the mod-
ulation envelope at all frequencies. However, in such sys-
tems, spontaneous emission noise is ignored since chirp is
the overwhelming effect [7].

In contrast to digital or wide-band analog transmis-
sion systems, frequency distribution systems employ a
narrow-band loop filter at the output of the fiber receiver.
Therefore, high-frequency deviations of the modulation en-
velope phase are averaged out, leaving only the laser noise
within the loop bandwidth. An analysis of the effect of
close-to-carrier laser frequency noise on a long-distance fre-
quency reference transmission system has not been pub-
lished (to our knowledge), so the effects of laser frequency
noise have not been known. Also, at the levels of signal to
noise ratio (SNR) and frequency stability of the frequency
distribution systems under consideration, it has been un-
clear what role laser frequency noise plays in determining
the ultimate system stability attainable. The present anal-
ysis provides an estimate of the role of intrinsic laser fre-
quency noise in a narrow-band frequency distribution sys-
tem to determine the level at which system performance
might become limited.

Since high-frequency laser chirp can be neglected in
a narrow-band system, the present analysis considers only
the intrinsic laser frequency noise within the bandwidth
of the output filter. As such, the analysis applies to any
type of laser system, although semiconductor lasers are
typically used. Externally modulated Nd:YAG lasers at
1318 nm may be an attractive alternative to semiconduc-
tor lasers for long-haul analog signal transmission. The
present analysis applies equally well to these types of lasers
by substitution of the appropriate parameters.

lll. Analysis

Intrinsic laser frequency noise has its origins in the
discrete random photons spontaneously emitted into the
lasing mode that cause random frequency changes of the
laser wavelength [8-10]. The high-frequency character of
this noise is well-known. It is basically flat within the mod-
ulation bandwidth, peaking at the relaxation oscillation
resonance of the laser diode cavity, usually in the tens-of-
gigahertz region [8, 9]. Within tens of kHz of the carrier,
the frequency noise exhibits a 1/ f character [10]. Close-to-
carrier measurements of laser noise are limited to within
about 10 kIIz, due to the physical difficulty of fabricating
frequency discriminators with sufficient resolution at opti-
cal frequencies. It is this low-frequency FM noise that is
of interest for the analysis of narrow-band frequency dis-
tribution systems.
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We desire an expression for the phase noise spectral
density of the modulation signal as a function of the spec-
tral density of laser frequency fluctuations. The resultant
phase noise density may then be used to calculate the ex-
pected Allan deviation of the reference signal, provided the
character of the laser frequency noise is known.

Consider a single-longitudinal-mode laser coupled to
a single-mode fiber. The laser output is amplitude modu-
lated at RF frequency . The phase delay for the modu-
lation signal envelope along the fiber is given by

2rnLQ
p="T"20

(rad) )
where n is the fiber index of refraction, L is the fiber length,
and ¢ is the speed of light in a vacuum. It is assumed
that the laser operates in a single longitudinal mode at
A = 1.3 ym. Now, consider the effect of a perturbation,
such as a change in ambient temperature, on the refractive
index of the fiber. This causes a phase change

_ dn27 L Q
- c

dé (rad) (2)

Multiplying the numerator and denominator on the right-
hand side by dA gives

_ 2 LQd) (dn)

s %) 3)

c

By writing dA in terms of the laser frequency v, the phase
deviations may be expressed in terms of the laser frequency
deviations, which have the same (random) time depen-
dence. Thus

dé(t) = du(t)QLl-;.?—)‘2 (—Z—Z) (rad/sec)  (4)

For the analysis of frequency stability, it is more con-
venient to look at the last expression in the frequency do-
main by Fourier transforming as follows:

27 LQ X dn

s =50 [T E] am) )

In this expression, Sy(f) is the spectral density of the
phase fluctuations at an offset frequency f from the RF
signal; the fluctuations are induced by the spectrum of
random frequency deviations, S,(f), of the laser.

The variation of the effective fiber index of refraction
with wavelength %’X‘ depends on the waveguide parameters
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and material composition of the fiber. The measured result
for typical single-mode fiber at 1300 nm is [11]

dn _
I 2701 m! (6)

Inserting this value into Eq. (5) and substituting the
appropriate constants produces the simple relation

So(f) = Su(f) L2Q2(1.02 x 107°Y) (rad?/Hz)  (7)

The above quantity is the mean-square phase-noise
spectral density at an offset f from the modulation signal,
. This is the spectrum which would be observed if a
perfect oscillator (i.e., an oscillator with no phase noise)
modulated the laser and if the output of the photodetector
were compared to a second perfect oscillator, as in a phase
noise measurement system.

IV. Numerical Estimates

The FM noise spectrum of distributed feedback-type
(DFB) single-mode lasers typically used in fiber optic dis-
tribution systems exhibits a power-independent 1/f char-
acter at low frequencies (below about 1 MHz). In the
modulation band, the FM noise is white and inversely pro-
portional to optical power [10]. The physical mechanism
responsible for the 1/f behavior is thought to be the trap-
ping of carriers due to impurities and interfacial bound-
aries, but it is not fully understood. The white portion of
the spectrum is due to spontaneous-emission events and is
adequately modeled by theory [5, 8].

The frequency noise spectrum of typical DFB lasers
has been measured experimentally [10]. The above-
mentioned physical mechanisms may be modeled as

(8)

where P is the average output power of the laser and f is
the frequency offset from the optical carrier. C and K are
empirically determined constants. For the Fujitsu DFB
laser diodes measured [10], C = 1.5 x 10* (Hz - W), and
K = 5.8 x 10! (Hz?).

The frequency noise spectrum of a typical DFB laser is
illustrated in Fig. 1. As laser power is increased, the white
portion of the noise spectrum decreases proportional to
P, A numerical estimate of the additive RF phase noise



requires that only the 1/ f portion of S, (f) be inserted into
Eq. (7), which gives

5.8 x 10!
f

q25:9x 107%
f

Se(f) = Q2L%(1.05 x 107°!) (rad?/Hz)

=L? (rad?/Hz) 9)

The 1/f laser frequency noise is converted to 1/f, or
“flicker,” phase noise in the fiber optic distribution system.
This level of 1/ f phase noise depends on the inherent quan-
tum fluctuations of the laser frequency and represents the
ultimate phase noise floor of the system.

For flicker phase moise, the Allan deviation (square
root of the Allan variance) may be calculated from the
following relation [12]:

- 3 Sef)f
oy(1) = \/ O S -(B88fir) (1)

where fj, is the frequency cutoff of the phase noise. In this
case, fi is one-half the bandwidth of the output filter.

Substituting Eq. (9) into the last expression, the mod-
ulation frequency cancels, and the expression for the Allan
deviation reduces to

oy(7) = \/(Q_W.;‘?—TZL% x 10-4°In(8.88 fr 7)  (11)

The laser-induced flicker phase noise thus sets the
minimum bias level of the 1/7 section of the Allan de-
viation plot. The fact that the last expression does not
depend on the RF modulation frequency, 2, is significant.
This implies that moving to higher or lower modulation
frequencies for reference signal distribution will not alter
the laser frequency noise “floor” of the Allan deviation.

For purposes of comparison, we consider an actual fre-
quency distribution link in use at the NASA/JPL Gold-
stone Deep Space Communications Complex. The longest
frequency distribution run is 29 km. Assuming that the
output filter bandwidth, fs, is 10 Hz, the Allan deviation,
calculated from Eq. (11), is

4.1 x 10716
T

(12)

oy(r) =

The relation between the laser-frequency noise-limited
Allan deviation of the 29-km link and the Allan deviation
of a typical hydrogen maser is plotted in Fig. 2. This
represents the ultimate frequency stability attainable with
such a link, provided all other noise sources are negligible.

V. Present State of the Art

The ultimate link stability plotted in Fig. 2 will only
be attained if all other noise sources are negligible. In real-
ity, other noise sources do contribute to the link stability.
This is illustrated in Fig. 3, where an actual measurement
of the 29-km Goldstone link is plotted in addition to the
maser and the ultimate-stability-link curves of Fig. 2.

In present-day systems, the Allan deviation 1/7 inter-
cept is set by the SNR of the fiber link, which is determined
by the laser intensity noise. The SNR of a typical high-
performance analog link is 120 dB/Hz. Figure 4 illustrates
the 1-sec Allan deviation as a function of fiber length. It
is immediately apparent from Fig. 4 that the laser fre-
quency noise does not limit frequency distribution system
performance at this time, since the laser SNR dominates.
As lower amplitude-noise lasers become available, the laser
frequency mnoise floor of the Allan deviation may begin to
limit frequency reference distribution system performance.

Figure 5 depicts fiber link Allan deviation at 1 second
as a function of link SNR. The laser relative intensity noise
(RIN) sets the SNR of the fiber link for short distances [13].
Also shown is the Allan deviation floor due to laser fre-
quency noise for a 29-km link. This plot shows clearly that
laser frequency noise limits the frequency stability “floor”
of the fiber link to 4 x 10~'¢/r for SNR > 145 dB/Hz.
Systems with as high as 150 dB/Hz SNR may be achiev-
able with externally modulated high-power semiconductor-
diode-pumped Nd:YAG solid-state lasers, or through the
use of squeezed light generated directly from semiconduc-
tor lasers. As these system improvements are realized, the
low-frequency 1/ f FM noise of the laser may begin to limit
system performance.

A final observation: Since the fiber optic transmission
system converts laser frequency noise to RF phase noise, it
may be the case that a stabilized fiber optic link comprises
a very accurate system for measuring the frequency devi-
ations of lasers close to the optical carrier. This approach
is under consideration for future research.

VIi. Conclusion

At present, the noise floor of fiber optic distribution
systems is determined by the laser signal to noise ratio
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(SNR) in the RF modulation band. However, lasers with
lower relative intensity noise (RIN) or those which use
squeezed light promise increases in link SNR, and passive
and active temperature-stabilization schemes can improve
link stability at long averaging times. As these improve-
ments in components and systems are realized, the funda-
mental limit for frequency stability due to laser frequency
noise may be reached.

The present analysis provides the contribution to the
phase noise of a transmitted frequency reference due to
single-mode laser frequency deviations. Through interac-
tion with the dispersion of the fiber, the 1/ f FM noise close
to the optical carrier is converted to 1/f phase noise close
to the RF reference signal. The additive 1/f laser-induced
phase noise is a function of the fiber dispersion and length
and determines the ultimate Allan deviation floor of the

fiber optic distribution system in the 1- to 100-second re-
gion.

For the longest fiber optic frequency distribution link
in the NASA/JPL Deep Space Network (29 km), using
data for commercially available DFB lasers, the analysis
indicates that the link Allan deviation is limited to 4 x
10716/ (for averaging times between 1 second and 100
seconds). This stability limit will be reached at link SNR of
145 db/Hz, which is 25 dB better than the present system.

Further increases in SNR will not yield higher link sta-
bility unless laser frequency noise is decreased as well. The
laser FM noise stability limit is two orders of magnitude
higher stability than the best current frequency standard,
which indicates that laser frequency noise will not limit
fiber optic frequency distribution capability in the foresee-
able future.
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This article presents data on the thermal coefficient of delay for various coaxial
and fiber-optic cables, as measured by the Frequency and Timing Systems Engineer-
ing Group and the Time and Frequency Systems Research Group. The measured
pressure coefficient of delay is also given for the air-dielectric coaxial cables. The
article includes a description of the measurement method and a description of each
of the cables and its use at JPL and in the DSN. An improvement in frequency and
phase stability by a factor of ten is possible with the use of fiber optics.

~

I. Introduction

Highly stable frequency and timing reference signals
generated by atomic frequency standards enable the
NASA/JPL Deep Space Network (DSN) to make precise
measurements of relative time and position. These mea-
surements are used to locate spacecraft and guide them
to their destinations. They are also used to support ra-
dio science, radio and radar astronomy, very long baseline
interferometry, and geodynamics.

Within a Deep Space Communications Complex
(DSCC), high-stability distribution systems are used to
distribute the frequency and timing reference signals de-
rived from the frequency standard to the subsystems that
use them. These distribution systems use coaxial or fiber-
optic cables as the transmission medium. Delay changes in
these cables are often the major contributor to the phase
and frequency instability of the distributed reference sig-
nals.

Detailed data on delay stability of cables is gener-
ally not available from manufacturers. Since this infor-
mation is needed to design frequency and timing distribu-
tion systems, the Time and Frequency Systems Research
Group and the Frequency and Timing Systems Engineer-
ing Group have measured the thermal coefficient of delay
(TCD) and the pressure coefficient of delay (PCD) for vari-
ous coaxial and fiber-optic cables. This article presents the
results of these measurements. A key finding is that an im-
provement in frequency and phase stability by a factor of
ten is possible, compatible with anticipated requirements
on the DSN for supporting gravitational-wave experiments
and connected-element interferometry.

Il. Background

Delay changes degrade the phase and frequency stabil-
ity of a signal transmitted through a transmission line [1].
When the temperature of a transmission line changes, the
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result is a corresponding delay change through the trans-
mission line. A pressure change in an air-dielectric trans-
mission line results in an additional delay change, since a
dielectric constant change results from a pressure change.

The TCD is a measure of delay change in a signal path
that results from a temperature change. Its value is often
given in parts per million per deg Celsius (ppm/deg C),
which is the change in delay divided by the total delay
normalized to 1 million units. In equation form it is

At(10%)

TCD = =77

(1)

where At is the change in delay through a signal path, t is
the nominal delay through the signal path, and AT is the
change in temperature. Similarly, the pressure coefficient
of delay (PCD) is a measure of delay change in a signal
path that results from a pressure change. Like TCD, the
value of PCD is often given in ppm/psi.

In practice, phase measurements can be made with
much higher resolution and accuracy than direct delay
measurements. Therefore, to obtain the data presented in
this article, phase changes were measured and converted to
delay changes. Since phase delay has a linear relationship
to time delay, Eq. (1) can be rewitten in terms of phase as

AO(10%)

TCD = —5AT

)

where A@ is the change in phase delay through a signal
path, and © is the nominal phase delay through the signal
path.

The TCD and PCD of various cables have been mea-
sured, and the data presented in this article will enable
designers to identify a cable with suitable stability perfor-
mance for a particular application.

lll. Measurement Method

Figure 1 shows a block diagram of the measurement
system. A reference signal is separated by an RF power
splitter into two signals. One of these signals is passed
through the cable under test, and the other signal is used
as a reference. The signal at the output of the cable under
test drives one port of an RF phase detector. The reference
signal from the RF power splitter passes through a man-
ual RF phase shifter and drives the other port of the RF
phase detector. A lowpass filter on the output of the RF
phase detector eliminates the RF signals, leaving only the
DC component, which is measured with a DC voltmeter.
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A temperature-controlled test chamber contains the cable
under test.

The phase detector’s sensitivity is measured in volts
per deg phase, and must be calibrated before measure-
ments can be made. For most phase detectors, the out-
put voltage vs. phase curve, commonly called the S-curve,
is sinusoidal if the proper input signal levels are applied.
When this is the case, it is only necessary to measure the
peak voltage out of the phase detector in order to calibrate
it. The peak voltage is obtained by adjusting the manual
phase shifter for 0 deg or 180 deg phase difference between
the signals at the phase detector input ports. In terms of
the peak voltage, the slope of the S-curve, in volts per deg
phase, near zero volts (90 deg) is

where V}, is the peak voltage out of the RF phase detector.
If the phase detector curve is not sinusoidal, it is necessary
to determine the slope of the curve by other means.

The measurements are made with the phase difference
between the signals applied to the phase detector set near
90 deg. This is where the output of the phase detector is
near zero volts. For these measurements, the phase detec-
tor output voltage vs. phase change is assumed to be lin-
ear in this region. However, the total phase-delay change
in the cable under test should be no more than +30 deg
over the test temperature range. This keeps errors due to
the nonlinearity of the S-curve to less than 5 percent. A
lower test frequency permits testing very long cables with-
out exceeding a 30-deg phase-delay change over the test
temperature range.

To make the measurement, the temperature of the
test chamber is set to a nominal value, usually 25 deg C.
The manual phase shifter is adjusted to obtain a 90-deg
phase difference between the signals at the ports of the
RF phase detector. For this phase difference, the output
voltage from the RF phase detector is near zero. Once this
zero-volt reference is established, the temperature in the
test chamber is changed in steps. For each temperature
change in the test chamber, the voltage out of the phase
detector changes, indicating a phase (delay) change. The
value of the phase-delay change is

AE

A0 = 2= (4)

where AE is the change in voltage due to a temperature
change.



When the voltage change stabilizes, its new value is
recorded and the temperature in the test chamber is
stepped to a new value. This can take from 20 min to
1 hr per step. The temperature is normally changed in
steps of 5 deg C. This usually results in a large enough
phase change to be accurately measured. Yet the phase
change is not so large that it results in significant error
due to the nonlinearity of the phase-detector curve.

From Egs. (2), (3), and (4), the TCD in terms of the
known and measured parameters is

AE(10°)(3 x 10%)ar

TCD = —ofV, AT ®)

where o is the propagation constant for the cable, f is
the measurement frequency used, [ is the physical length
of the cable, and AT is the change in temperature of the
transmission line.

A plot of the phase detector output vs. time and tem-
perature for a 39.6-m length of RG-223/U cable is shown in
Fig. 2. Each step in phase was the result of a temperature
step of 5 deg C in the test chamber. The total tempera-
ture range is from 35 deg C at the bottom of the plot to
15 deg C at the top of the plot. The vertical scale shows
50 mV per major division (50 mV/div), and the horizontal
scale shows time in 1 hr per major division (1 hr/div). The
phase detector’s peak output V,, was measured at 1.06 V.
The propagation factor a for the cable is given by the
manufacturer as 0.659. A 100-MHz test frequency was
used. Using the example of the step between 30 deg C and
25 deg C, shown enclosed in dotted lines at the left side of
Fig. 2, the change in voltage E is 1.2(5x 1072) = 6 x 10~2.
Evaluating Eq. (5) for this change in delay using the above
information,

(6 x 10-2)(105)(3 x 108)(0.659)

TCD = 2(108)(39.6)7(1.06)5

= 90ppm/deg C at 27.5 deg C

which is the average temperature of this step.

IV. Results

The cables that have been measured in the Frequency
Standards Laboratory (FSL) at JPL are loose-tube single-
mode fiber-optic cable, low-TCD fiber-optic cable, and
metal-based coaxial cables RG-223/U, SF-214, F242-VV-
2400-A0B, F645-EIA-5160-A0, HCC-12-50J, 64-500, and
64-875. FEach of these cables and its application at JPL

and in the DSN is described in this section. The TCD for
each cable is given and the PCD is given for those cables
that are normally pressurized.

Loose-tube single-mode fiber-optic cable is used be-
tween Deep Space Stations (DSSs) at the Goldstone
DSCC. These cables, supplied by several manufacturers,
use Corning single-mode fiber and are very similar in de-
sign. Figure 3 depicts the general cable design. The per-
formance characteristics are virtually identical for all of
the manufacturers, and are given in Table 1 [2, 3, 4]. A
graph of TCD with respect to temperature is shown in
Fig. 4, which compares this type of cable to low-TCD op-
tical fiber and the best coaxial cable (64-875).

A new optical fiber with a very low TCD has been
tested in the FSL. This fiber is manufactured by Sumi-
tomo Electric, and cables containing four fibers of this type
are now being procured. They will be tested for distribu-
tion of several types of signals in the DSN, including fre-
quency references, time references, local oscillator signals,
and intermediate frequency (IF) signals. Table 2 lists the
physical and performance characteristics of this new fiber
[6]. Figure 5 shows a graph of its TCD with respect to
temperature.

RG-223/U is a general-purpose coaxial cable in com-
mon use at JPL and in the DSN. It is manufactured by
a number of companies, including Times Wire and Ca-
ble. Table 3 lists its important physical and performance
characteristics, and Fig. 6 shows a graph of its TCD with
respect to temperature [6].

SF-214 is also a general-purpose cable in common use
at JPL and in the DSN. This cable is manufactured by
Times Wire and Cable. It has lower loss than RG-223,
and is used where this characteristic is important. It is also
used in the antenna wrap-ups in the DSN where the cable
must be flexed. Table 4 lists the important physical and
performance characteristics of SF-214, and Fig. 7 shows a
graph of its TCD with respect to temperature [6].

F242-VV-2400-AOB is a 3/8-in.-diameter coaxial ca-
ble with a corrugated outer conductor for flexibility. It is
used in the FSL for test applications where the cable must
have low TCD and be flexible to accommodate various test
configurations. It is manufactured by Flexco Microwave.
Table 5 lists its important physical and performance char-
acteristics [7], and Fig. 8 shows a graph of its TCD with
respect to temperature.

F645-EIA-5160-A0 is a l-in.-diameter coaxial cable
with a corrugated outer conductor, manufactured by
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Flexco Microwave. It was tested for possible use in the
DSN. Table 6 lists its important physical and performance
characteristics [7], and Fig. 9 shows a graph of its TCD
with respect to temperature. The PCD of F645 cable with
respect to air pressure is shown in Fig. 10.

HCC-12-50J is a 1/2-in.-diameter hardline cable used
in the FSL where delay stability is critical but the cable
is not flexed. It is manufactured by Cablewave Systems.
Table 7 lists its important physical and performance char-
acteristics [8] and Fig. 11 shows a graph of its TCD with
respect to temperature.

Two pressurized hardline air-dielectric cables, 64-500
and 64-875, are used in the DSN where the lowest TCD
and low attenuation are needed. The 64-875, a 7/8-in.-
diameter cable, has better delay stability and lower atten-
uation than the 64-500 cable, which has a 1/2-in. diameter.
However, the 64-875 cable is considerably more expensive
and harder to work with. These two cables were manu-
factured by Prodelin, which was sold to Cablewave, who
now manufactures them. Cablewave has informed the ca-
ble Cognizant Operations Engineer (COE) that they will
stop manufacturing these cables in the near future. Table 8
lists the important physical and performance characteris-
tics for 64-500 cable, and Figs. 12 and 13 show graphs of

its TCD and PCD. Table 9 lists the important physical
and performance characteristics of 64-875 [9], and Figs. 14
and 15 show graphs of its TCD and PCD.

V. Conclusion

Several fiber-optic cables and coaxial cables used at
JPL and in the DSN have been measured to determine
their TCD. The PCD of the air-dielectric cables was also
measured. The plots of TCD and PCD given here are
meant to guide the user in choosing a coaxial or fiber-optic
cable for use in applications requiring high delay stability.
Many of the technical parameters needed to make tradeoff
decisions are given. The costs of these cables as given
in the tables are to be taken as a guide only. For very
large quantities, e.g., tens of kilometers, the costs are tied
largely to material costs and market conditions, and the
cost of short lengths of cable may be three to four times
the large-quantity cost. In the normal operating range of
temperatures from 15 to 35 deg C, the new low-TCD fiber-
optic cable with superior delay stability permits signals to
be transmitted with unprecedented frequency and phase
stability. For instance, compared to the best coaxial cable
at 25 deg C, the use of low-TCD fiber would improve the
frequency and phase stability of a transmitted signal by
more than ten times.
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Table 1. Physlcal and performance characteristics of loose-tubs, single-mode, fiber-optic cable

Cutofl wavelength
Core concentricity
Cladding diameter
Coating diameter

Core diameter

Spot size

Dispersion of 1285- to 1350-nm wavelength
Optical loss, maximum
RF bandwidth
Number of fibers
Nominal weight
Maximum diameter
Temperature range

Maximum tensile rating
During installation
Long-term after installation

Minimum bend radius
During installation
Free bend, installed

Crush resistance, long-term installed
Maximum vertical rise

Price

1130 to 1270 nm
< lpm

125 £3um

250 £15um
8.7um

10pm

< 3.5 psec/nm-km
0.5 dB/km

> 100 GHz-km

18 and 24

165 kg/km

15.1 mm

—40 to 470 deg C

2700 N
600 N

300 mm
150 mm

50 N/cm
175 m

$0.25/fiber-meter to $0.35/fiber-meter

Table 2. Physical and performance characteristics of low-TCD,

single-mode optical fiber cable

Cutoff wavelength

Core concentricity
Cladding diameter
Coating diameter

Spot size

Zero-dispersion wavelength
Zero-dispersion slope
Optical loss, maximum
RF bandwidth

Price

1260 nm
< 0.1um
125.4pum
815.0um
9.6um

1305 nm

< 0.083 psec/nm-km

0.32 dB/km
> 100 Ghz-km
= $4/fiber-meter




Table 3. Physical and performance characteristics of RG-223/U coaxlial cable

Inner conductor
Dielectric

Outer conductor

Jacket material

Cable outside diameter

Minimum bend radius

Weight

Impedance

Nominal capacitance

Maximum operating temperature range
Maximum operating voltage
Propagation constant

Nominal loss characteristics, dB/100 ft

10 MHz 1.35
50 MHz 3.0
100 MHz 4.3
200 MHz 6.0
400 MHz 8.8
1 GHz 16.5
3 GHz 36.0
5 GHz 51.0
10 GHz 85.0

Price, < 300 meters

Silver-covered copper; outside diameter
0.035 in.

Solid polyethylene; outside diameter
0.116 in.

Two shielding braids, silver-covered copper
Black polyvinylchloride

3/16 in.

1.0 in.

0.034 Ibs/ft

50 ohms

30.8 pf/ft

—40 to +80 deg C

1900 volts RMS

0.659

x $4.50/m
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Table 4. Physical and performance characteristics of SF-214 coaxlal cable

Inner conductor
Dielectric
Outer conductor

Jacket material

Cable outside diameter

Minimum bend radius

Weight

Impedance

Cutoff frequency

Nominal capacitance

Maximum operating temperature range
Maximum operating voltage
Propagation constant

Minimum recommended bend radius
Nominal loss characteristics, dB/100 ft

10 MHz Not available
50 MHz Not available
100 MHz 2.0
200 MHz 2.9
400 MHz 4.1
1 GHz 7.0
3 GHz 13.0
5 GHz 18.0
10 GHz 27.0

Price, < 300 meters

Seven strands of 0.0296-in. silver-covered
copper; outside diameter 0.083 in.

Solid polyethylene; outside diameter
0.285 in.

Silver-covered copper, braided flat round
composites

Black polyvinylchloride
0.450 in.

2.0in.

0.144 Ibs/ft

50 chms

13.7 GHz

30.8 pf/ft

—55 to +80 deg C
5000 volts RMS
0.659

2.0 in.

= $20/m




Table 5. Physical and performance characteristics of F242-VV-2400-A0B coaxial cable

Inner conductor
Dielectric

OQOuter conductor

Jacket material

Cable outside diameter

Minimum bend radius

Weight

Impedance

Cutofl frequency

Nominal capacitance

Maximum operating temperature range
Maximum operating voltage
Propagation constant

Nominal loss characteristics, dB/100 ft

10 MHz Not available
50 MHz Not available
100 MHz 2.5
200 MHz 4.0
400 MHz 6.0
1 GHz 8.5
3 GHz 150
5 GHz 19.5
10 GHz 37.0
Price, < 1 km
> 5 km

Silver-covered copper; outside diameter
0.081 in.

Air; spline polytetrafluoroethylene spacer;
outside diameter 0.200 in.

Soldered strip-wound (corrugated)
silver-covered copper; outside diameter
0.330 in.

Fluorinated ethylene propylene
3/8 in.

1.0 in.

Not available

50 ohms

20 GHz

Not available

—55 to +200 deg C

5000 volts RMS

0.80

~ $102/m
~ $30/m
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Table 6. Physical and performance characteristics of F645-E1A-5160-A0 coaxlial cable

Inner conductor
Dielectric

Outer conductor

Jacket material

Cable outside diameter

Minimum bend radius

Weight

Impedance

Cutoff frequency

Nominal capacitance

Maximum operating temperature range
Maximumn operating voltage
Propagation constant

Nominal loss characteristics, dB/100 ft

10 MHz Not available
50 MHz Not available
100 MHz 0.60
200 MHz 0.95
400 MHz 1.50
1 GHz 2.70
3 GHz 5.0
5 GHz 6.80
10 GHz 10.0
Price, < 1 km
> 5km

Stranded silver-covered copper
Air; spline polytetraflucroethylene spacer

Soldered strip-wound (corrugated)
silver-covered copper; outside diameter
1.025 in.

Fluorinated ethylene propylene
1.065 in.

5.5 in.

Not available

50 ohms

6 GHz

Not available

—55 to +200 deg C

5000 volts RMS

0.79

~ $148/m
=~ $40/m




Table 7. Physical and performance characteristics of HCC-12-50J coaxial cable

Inner conductor
Dielectric
Quter conductor

Jacket material

Cable outside diameter

Minimum bend radius

Weight

Impedance

Cutoff frequency

Nominal capacitance

Maximum operating temperature range
Maximum operating voltage
Propagation constant

Nominal loss characteristics, dB/100 ft

10 MHz 0.26
50 MHz 0.59
100 MHz 0.85
200 MHz 1.3
400 MHz 1.8
1 GHz 29
3 GHz 5.0
5 GHz 7.0
10 GHz 10.0
Price, > 5 km

Copper-clad aluminum; outside diameter
0.155 in.

Air; spiral polyethylene spacer; outside
diameter 0.338 in.

Corrugated copper; outside diameter
0.484 in.

Black polyethylene
0.618 in.

5 in.

0.16 Ibs/ft

50 ohms

11.3 GHz

Not available

—55 to +80 deg C
Not available
0.915

~ $12/m
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Table 8. Physlcal and performance characteristics of 64-500 pressurized hardline
air-dielectric cable

Inner conductor
Dielectric

Outer conductor

Jacket material

Cable outside diameter

Minimum bend radius

Weight

Impedance

Cutoff frequency

Nominal capacitance

Maximum operating temperature range
Maximum operating voltage
Propagation constant

Nominal loss characteristics, dB/100 ft

10 MHz 0.24
50 MHz 0.53
100 MHz 0.75
200 MHz 1.1
400 MHz 1.5
1 GHz 2.4
3 GHz 4.6
5 GHz 6.4
10 GHz 10.0
Price, < 1 km
> 5km

Copper-clad aluminum; outside diameter
0.167 in.

Air; six polyethylene tubes; outside
diameter 0.456 in.

Aluminum; outside diameter 0.530 in.
Black polyethylene
0.550 in.

5 in.

0.22 lbs/ft

50 ohms

Not available

Not available

—55 to +80 deg C
3.4 volts RMS
0.855

~ $35/m
=~ $10/m




Table 9. Physical and performance characteristics of 64-875 pressurized hardline
alr-dlelectric cable

Inner conductor
Dielectric

Outer conductor

Jacket material

Cable outside diameter

Minimum bend radius

Weight

Impedance

Cutoff frequency

Nominal capacitance

Maximum operating temperature range
Maximum operating voltage
Propagation constant

Nominal loss characteristics, dB/100 ft

10 MHz 0.13
50 MHz 0.30
100 MHz 0.43
200 MHz 0.6
400 MHz 0.86
1 GHz 1.4
3 GHz 2.7
5 GHz 4.0
10 GHz Not available
Price, < 1 km
> 5 km

Copper-clad aluminum; outside diameter
0.311 in.

Air; six polyethylene tubes; outside
diameter 0.837 in.

Aluminum; outside diameter 0.953 in.
Black polyethylene
1.023 in.

10 in.

0.46 Ibs/ft

50 ohms

Not available

Not available

—55 to 480 deg C
6.0 volts RMS
0.855

=~ $66/m
=~ $18/m
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THERMAL COEFFICIENT OF DELAY, ppm/°C

Fig. 4. A comparison of the measured TCD of loose-tube, single-
mode, fiber-optic cable, the best coaxial cable (64-875), and low-
TCD fiber-optic cable.

THERMAL COEFFICIENT OF DELAY, ppm/°C

20

15—

o o-ooo-------------t--on’u-c-ln---'-cu--'.---l--l

= COAX INCREASING
TEMPERATURE

—=—=COAX DECREASING
TEMPERATURE

seens o LOW_TCD
FIBER-OPTIC CABLE

= — LOQSE-TUBE
FIBER-OPTIC CABLE

fn-u.--uu-uno-.uu

18

23

28
TEMPERATURE, °C

33

1.0

0.8

0.7

0.2

0.1

INCREASING AND
DECREASING
TEMPERATURE

L .

18

Fig. 5. Measured TCD of Sumitomo Electric optical fiber.

23

28
TEMPERATURE, °C

33

THERMAL COEFFICIENT OF DELAY, ppm/C

THERMAL COEFFICIENT OF DELAY, ppm/°C

-110

-120

INCREASING

S TEMPERATURE

[ 1

18

-155

-160

-165

-170

-175

-180

Fig. 6. Measured TCD of RG-223/U coaxial cable.

23 28
TEMPERATURE, °C

33

T

INCREASING
TEMPERATURE

DECREASING\
TEMPERATURE®,

T

18

TEMPERATURE, °C

Fig. 7. Measured TCD of SF-214 coaxial cable.

33

57



THERMAL COEFFICIENT OF DELAY, ppmy/°C

THERMAL COEFFICIENT OF DELAY, ppm/°C

20

10

INCREASING

TEMPERATURE
0 /
/
,/ DECREASING
,/ TEMPERATURE
/7
B
7
K
-10 L ]
18 23 28
TEMPERATURE, °C
Fig. 8. Measured TCD of F242 coaxlal cable.
30 T T
25 |-
20+
DECREASING
B TEMPERATURE
10
INCREASING
TEMPERATURE
5 b —
0 i 1
18 23 28

TEMPERATURE, °C

Fig. 9. Measured TCD of F645 coaxlal cable.

AIR PRESSURE COEFFICIENT OF DELAY, ppm/psi

THERMAL COEFFICIENT OF DELAY, ppm/*C

25

20

15

10

I~ DECREASING
PRESSURE

—— = - n W -

INCREASING

PRESSURE
5 -
0 1 1 1
15 45 75 105 135
AIR PRESSURE, psi
Fig. 10. Measured PCD of F645 coaxial cable.

30 T T
25 -
20 INCREASING AND -]

10

DECREASING

TEMPERATURE

0
18 23 28

TEMPERATURE, °C

Fig. 11. Measured TCD of HCC-12-50J coaxlal cable.



THERMAL COEFFICIENT OF DELAY, ppm/°C

AIR PRESSURE COEFFICIENT OF DELAY, ppn/psi

35

I,
301
25 \
20

15

A
DECREASING Y
TEMPERATURE '\

INCREASING
TEMPERATURE

10 AN
5
™~ ~ -
[¢] l | s
18 23 28 33
TEMPERATURE, °C
Fig. 12. Measured TCD of 64-500 coaxlal cable.
30 T ] T
25— n
20— -
15 DECREASING |
PRESSURE ~\
T T T =T
oe—"" —
INCREASING
PRESSURE
51— -
0 L i I
15 45 75 10.5 135
AIR PRESSURE, psi
Fig. 13. Measured PCD of 64-500 coaxlal cable.

THERMAL COEFFICIENT OF DELAY, ppm/°C

AIR PRESSURE COEFFICIENT OF DELAY, ppm/psi

30

25

15

10

INCREASING
TEMPERATURE

-~

~
DECREASING ™~ _
TEMPERATURE  ~~

Sm——
o | i
18 23 28 33
TEMPERATURE, °C
Fig. 14. Measured TCD of 64-875 coaxial cable.
30 T I T
25 —
20+ -
= INCREASING —
15 / PRESSURE
o ‘\ .
DECREASING
PRESSURE
5 _
0 ! § 1
15 45 75 10.5 13.5

AIR PRESSURE, psi

Fig. 15. Measured PCD of 64-875 coaxlal cable.

59



S5¢-32_
o643//

TDA Progress Report 42-99

!

N90-19440

- November 15, 1989

Performance of the All-Digital Data-Transition
Tracking Loop in the Advanced Receiver

U. Cheng and S. Hinedi
Communications Systems Research Section

This article describes the performance of the all-digital data-transition tracking
loop (DTTL) with coherent or noncoherent sampling. The effects of few samples
per symbol and of noncommensurate sampling rates and symbol rates are addressed
and analyzed. Their impacts on the loop phase-error variance and the mean time
to lose lock (MTLL) are quantified through computer simulations. The analysis
and preliminary simulations indicate that with three to four samples per symbol,
the DTTL can track with negligible jitter because of the presence of Earth Doppler
rate. Furthermore, the MTLL is also expected to be large enough to maintain lock

over a Deep Space Network track.

l. Introduction

In modern digital communication systems, analog-to-
digital conversion (ADC) is performed as far toward the
front end as possible using available technology. Usually,
the received signal is amplified and then downconverted to
the appropriate frequency for digital conversion. There-
after, various system functions are performed digitally, in-
cluding carrier, subcarrier, and symbol synchronization,
as well as signal detection and decoding. Depending on
the application, either the baseband signals (inphase and
quadrature) or the intermediate frequency (IF) signal can
be sampled. Furthermore, the sampling clock can be free-
running or controlled by the symbol-synchronization loop.
In the latter case, the sampling clock can be adjusted to
obtain an integer number of samples per cycle of the IF
signal, or to obtain an integer number of samples per re-
ceived symbol. All of these issues affect the final architec-
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ture and design of a receiver and influence the amount of
cross-coupling among the various loops.

Since sampling is done up front, the various track-
ing loops need to be implemented digitally. The classical
analog integrate-and-dump (I&D) filters, which are typi-
cally part of the loop arms (inphase and quadrature), must
be replaced by digital accumulators. This article inves-
tigates the performance of the all-digital data-transition
tracking loop (DTTL) with small noninteger numbers of
samples per symbol. In the previous version of the Ad-
vanced Receiver (ARX I) [1], the sampling was performed
synchronously with the symbol rate, and a large number
of samples per symbol were available. In the current ver-
sion of the Advanced Receiver (ARX II), the sampling is
performed asynchronously and the sample clock is indepen-
dent of the symbol rate. At the highest required data rate



of 6.6 Msymbols/sec and the processing rate of 20 MHz for
the Block V receiver, only about three samples per symbol
are obtained.

Some analytical results for the phase-error variance
of the analog DTTL were first derived in [2], where the
input was an analog signal and symbol and midphase de-
tection were performed with analog I&D filters. Later, the
analysis was reworked [3], taking into account variations of
the equivalent noise spectrum with respect to normalized
phase error.

The interest here is in the loop response and perfor-
mance of all-digital DT'TLs, where digital symbol detec-
tion and digital midphase accumulation are used. There
are two sampling scenarios: one is to sample the signal
instantaneously, and the other is to obtain the sample by
1&D sampling of the signal. The instantaneous sampling
technique can be used when the sampling rate is signifi-
cantly higher than the symbol rate. The 1&D sampling
technique should be used when the number of samples per
symbol is small. If the received symbol waveform is a per-
fect square wave, the samples by instantaneous sampling
all have equal amplitude. The samples by 1&D sampling
also have equal amplitude, except for the first sample of ev-
ery symbol which has a different polarity from the symbol
immediately preceding it. These changes in symbol polar-
ity are referred to as the transition boundaries. The first
sample after each transition boundary has a smaller am-
plitude than other samples due to integration across the
transition boundary. The all-digital DTTL can operate
on either type of sample. It is worthwhile noting at this
time that when the received signal is filtered and instanta-
neously sampled, the process can be modeled to the first
degree by 1&D sampling of an ideal waveform. Thus, 1&D
sampling can be thought of as a tool to model the filtering
operations in the receiver.

The components in the all-digital DTTL affected by
the type of sampling are the symbol detector and the mid-
phase accumulator. For instantaneous sampling, the sym-
bol detector accumulates all samples in the current symbol
epoch. The midphase detector accumulates all samples in
the current transition-detection window. For 1&D sam-
pling, the problem is slightly different. In this case, even
when a sample is in the current symbol epoch, most of its
energy may be from the previous symbol epoch. Therefore,
a more sophisticated rule is needed to determine whether
a particular sample should be used for the detection of a
particular symbol.

A reasonable criterion is to include a particular sample
in the current symbol if more than half of its energy is from

the current symbol. This criterion leads to a simple rule
for the operation of the symbol and midphase detectors.
The rule is as follows: the first sample after each symbol
boundary should belong to the previous symbol if the time
offset between the sample and the symbol boundary is less
than half of the sampling interval; otherwise, the sample
belongs to the current symbol. A sample mark is one-half
of a sampling interval ahead of its respective sample time
for I&D sampling, and is the respective sample time for in-
stantaneous sampling. Thus, the rule can be restated: the
symbol detector accumulates all samples with their sam-
ple marks in the current symbol epoch, and the midphase
detector accumulates all samples with their sample marks
in the current transition-detection window. Therefore, the
DTTL with 1&D sampling is similar to that with instan-
taneous sampling if the concept of a sample mark is used.

To simplify the mathematical analysis, the effects
of unequal 1&D sample amplitude immediately following
transition boundaries are ignored, and instead equal am-
plitude for all I&D samples is assumed.

To illustrate the differences between analog and all-
digital DTTLs, the noiseless case is considered first. Note
that if the input is an analog signal, the midphase inte-
grator can produce a nonzero error voltage no matter how
small the phase error is. Thus, a correction voltage can
be generated at every symbol transition whenever a phase
error exists. Therefore, the analog DTTL has infinite res-
olution for phase detection.

In contrast, the all-digital DTTL has only finite res-
olution for phase detection. This is illustrated in the fol-
lowing example. Suppose that there is an even number
of samples per symbol. When a symbol transition occurs,
the digital midphase accumulator can produce a nonzero
voltage only if the phase error causes sample slipping (as-
suming samples of equal amplitude). As long as the phase
error stays within a range of values that avoids sample
slipping, the loop always generates a no-error signal. This
range of undetectable phase errors accounts for the finite
resolution of the all-digital DTTL. The more samples per
symbol that are used, the higher the achievable resolution,
and the closer the all-digital DTTL is to its analog coun-
terpart. A key question is the impact of the all-digital
DTTL’s finite resolution on the phase-error variance for
few samples per symbol (say, four or five samples).

Another issue in an all-digital implementation is the
effect of a noninteger number of samples per symbol. If
the sampling clock is driven by the symbol-synchronization
loop, the number of samples per symbol can be made an
exact even integer, which reduces the self-noise generated
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in the midphase accumulator (as discussed later). Under
that sampling scenario, the sampling clock is constantly
adapting as the data rate changes due to Doppler or other
effects. One disadvantage of that scheme is that no fixed
time base is available in the system. On the other hand,
if the sampling clock is free-running and is derived from
a fixed frequency standard, the sampling period is fixed,
although the symbol rate may change. This may result in
a noninteger number of samples per symbol. A model is
derived in this article to analyze the performance of the
DTTL where the sampling rate and the data rate are non-
commensurate. Other issues such as the mean time to lose
lock (MTLL), probability of symbol error, probability of
losing lock, and error variance are also investigated via
simulations. In Section II, a general analysis of the loop is
presented in handling several scenarios. A discussion and
comparison with simulation results are given in Section III,
and the conclusion is given in Section IV.

Il. Analysis

The performance of the all-digital data-transition
tracking loop with noncoherent sampling is analyzed here.
The block diagram of the all-digital DTTL is delineated
in Fig. 1. The input r() to the DTTL can be obtained
by instantaneous sampling or by 1&D sampling. For the
Advanced Receiver II, the number of samples per symbol
becomes small at high data rates, and therefore the I&D
sampling technique is used. In the subsequent derivation,
equal-amplitude samples are assumed.

Noncoherent sampling means that the sampling clock
runs independently of the estimated symbol phase, i.e.,
the sampling time interval and the sampling time do not
change with the estimated symbol phase. This is not an
issue if there are many samples per symbol. The problem
becomes complex as the number of samples per symbol
decreases. The proposed Advanced Receiver II has about
three to four samples per symbol at high data rates (the
goal is 6.6 Msymbols per sec). Noncoherent sampling re-
sults in a noninteger number of samples per symbol. All
of these factors affect the performance of the DTTL by
changing its S-curve and by introducing self-noise. Con-
sidered here are the probability of loss of lock, the MTLL,
the degradation of the symbol detection, and the phase-
error variance. An approximate theory is presented for a
first-order DTTL. The approach is to derive the S-curve
and then solve the Fokker-Planck equation to get the den-
sity function of the phase error. The phase-error variance
and the degradation of the symbol detection can be eval-
uated from the phase-error density function.

To illustrate the phenomenon of self-noise, a simple
example is shown in Fig. 2, where there are five samples per
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symbol. Assumed are no thermal noise and perfect track-
ing at a particular moment. The output of the symbol-
transition detector is not zero because it sums three sam-
ples from the first symbol and two samples from the second
symbol (Fig. 2a). Notice that this situation occurs for ev-
ery symbol interval as long as the loop maintains perfect
tracking. The nonzero output of the loop filter will gradu-
ally drag the loop away from the perfect tracking condition
until the polarity of the output of the symbol-transition de-
tector changes (Fig. 2b). The loop filter cannot eliminate
this type of self-noise. The problem is more complex if the
number of samples per symbol is not an integer. In order
to describe this phenomenon, three useful parameters are
introduced here. Let 3 denote the number of samples per
symbol, which may not be an integer, and « denote the
offset of the first sample mark in a received symbol from
the symbol boundary. By convention, & is normalized and
is measured as a percentage of the sampling interval. If g
is an integer, o remains constant; if # is not an integer,
a varies from symbol to symbol. Let the received symbol
be numbered 0, 1, 2, ..., and let the value of « at the first
symbol be denoted as ag = <, which is referred to as the
initial sampling offset. The values of a at the subsequent
symbols, namely, a;, o,,..., can be computed from § and
7. The number of sample marks in a transition-detection
window and the number of sample marks in a symbol-
detection window are functions of &. Thus the output of
the symbol detector and that of the transition detector
fluctuate from symbol to symbol as a;. This subject will
be further discussed later.

Another important observation about the DTTL with
noncoherent sampling is that there i1s inherent phase error
due to finite samples per symbol. To illustrate this phe-
nomenon, consider the example shown in Fig. 3, where
every symbol contains four samples. As long as the es-
timated phase lies between t; and t5, the error signal is
always zero (or nearly zero if the received symbol does not
have a perfect square waveform or if there are unequal-
strength samples from I&D sampling), and the DTTL re-
mains in tracking. However, unresolved phase ambiguity
still exists within the interval from ¢, to t5. Mathemati-
cally, this phase ambiguity can be explained by a step-like
S-curve. This phenomenon might have little effect on sym-
bol detection performance if straight accumulation is used
to detect the symbols. However, if weighted accumulation
is used to detect the symbols, the phase ambiguity can in-
troduce misweighting and thus degrade performance. The
symbol-error probability can be obtained by simulation.

Before proceeding to the mathematical analysis, ex-
amine the all-digital DTTL block diagram again in Fig. 1.
The error-signal accumulator between the loop filter F(z)
and the multiplier performs an averaging function so that



the subsequent loop filter can operate at a slower speed.
The loop bandwidth is determined primarily by the loop
filter F(z). Thus the presence of the accumulator is sim-
ply for hardware convenience. In the following analysis,
the DTTL is considered without the error-signal accumu-
lator.

A. Mathematical Model

Assuming that the carrier and subcarrier (if any) have
been removed in an ideal fashion, the received waveform is
given by

r(t) = VS Y arp(t — kT) + n(t)

where S is the data power, n(t) is white Gaussian noise
with two-sided power spectral density No/2 W/Hz, a; =
+1 represents the polarity of the kth symbol, and p(t) is
the square-wave function having value 1 for 0 <t < T
and having value 0 elsewhere. With 1&D sampling, the
ith sample can be expressed as

r(i) = VSag + n(i) (1)

where it is assumed that the ith sample is derived from the
kth symbol, n(i) is a zero-mean Gaussian random variable
with variance 02 = No/(27}), and T, is the sampling inter-
val. Note that equal sample strength is assumed in Eq. (1).

Ar=18-0) - A8 ol
Ay={(1+NB—a]-[B—qa]

Aa=|28-af - [(1+2)F ~a

Let the phase error A (in cycles) be defined as

g—46

A= 2w

where # is the actual received symbol phase and g is the
estimated symbol phase. Note that A should have a value
between —0.5 and 0.5. The error signal is affected by the
locations of samples within their respective received sym-
bols. In order to quantify this effect, a set of twelve A
functions is defined, six for the A > 0 case and six for
the A < 0 case. They are the numbers of sample marks
contained in their respective intervals defined in Fig. 4(a).
The output of the inphase accumulator z(k) and the out-
put of the midphase accumulator y(k) can be expressed in
terms of the A functions. If A > 0, then

z(k) = \/§(Alak + Agagy1) + ni(k) + na(k) + na(k)

z(k +1) = VS(Asars1 + Agaryz) + na(k) + ns(k) + ne(k)
and

y(k) = V5(Asar + Asars) + na(k) + na(k) + na(k)
(2)
where nj(k), 1 < j < 6 are zero-mean Gaussian ran-

dom variables with their respective variances (A; —As)o?,
Asoz, A2(72, (Ae - Az)a’g, (Aa + Aq — Ae)(fz, and A40‘2.

The A functions are computed using the following
equations:

Ay=[24+N)f-a]—[28-<] (3)
[B-a] - (1+A-(W/2))B~a] {W/2>1+]

A5=
0 if W/2<1+42A
A+ A+ (W/2))B—a] - [B-q] fW/2>142

As"—’

A+ A+ (W/2)8—a] - [Q1+X=(W/2))B—a] {W/2<1+]A
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if A >0, and

Ay =[1+X)8-af +1
[-28+«]
AL =
[=A8+a] +1

Az=[2+M)F—-a]-[f-q]

Ay=f—of - [(1+X)8~c]

if —Af + « is not an integer

if —Af + « is an integer

(4)

N B—a]—[(1+A—(W/2))3 - qal if W/2 > -\
* A+ X+ (W/2D)B—a] - [(1+ 1= (W/2)F-a] if W/2< -
[A+2+(W/2)B—a] = [B—a] fW/2>-)
AL =
i 0 it W/2 < =)

if A < 0, where |y| is the greatest integer strictly less than
y.

In the above equations, W is the width of the
transition-detection window. The derivations of the twelve
A functions are similar. Two examples are given here, A,
and Aj. To derive A;, the beginning of the kth received
symbol is used as the reference point. The number of sam-
ple marks in the kth received symbol is [# — «. The
number of sample marks from the beginning of the kth re-
ceived symbol to the end of the kth estimated symbol is
(14 A)B — a]. Equation (3) follows by observing that the
number of sample marks from the end of the kth recetved
symbol to the end of the kth estimated symbol is A;. To
derive Aj, the beginning of the kth received symbol is also
used as the reference point. The number of sample marks
in the kth received symbol is | #— a]. The number of sam-
ple marks from the beginning of the kth received symbol to
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the end of the (k+1)th estimated symbol is [(2+A)F—a].
Equation {4) follows by observing that the number of sam-
ple marks from the end of the kth received symbol to the
end of the (k + 1)th estimated symbol is Aj.

The error signal e(k) is given by

(k) = 2(k)u(k)

The conditional S-curve is defined by
g(Ma) = B, ,{e(k)|A, o}

where E, , represents the conditional expectation on A
with respect to the noise and the signal. Following sim-
ilar mathematical manipulation as in [2],
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As — Asg
— —ﬂ-—erf((Al - AZ)\/EJ/(ﬁ(Al + A2)))

As — Ay {exp (_ Az + Ay Es) + exp( (Az — Ay)? E,)}

+ fﬂ'ﬂ(A3+A4)E, g —(A3+A4)ﬂ

_ 2
5) + o (~(3- a0 7))

Az + As {ex (__ A+ A,

"~ /7B(AL + AY)E, B
where E, is the symbol energy-to-noise ratio, namely,

ST

E, =2
3 NO

Using the same approach yields a similar result for the A <0 case:

4E{e(k)]A < 0,a} _ AL+ A} /"'_——), )
ﬂ\/g = 5 ‘3 5 erf( (Aa + A4)Esﬂ

+ As ; B4 erf((Af1 - Ag) \/Es/(ﬁ(Als - Afi)))

- 88 Lot (VBT AR o (105 - BB+ 59) |

Ay — AL {exp(—A’3+A’4E,) +exp(_ (A5 — Ay & )}

+ VTB(AL + ALE, 8 (AR + A8

_ AL+A; { AL+ A M-8 }
V7B, + Ay E; exp( B B.) + exo (AL + A%)B )
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Observe that g(A|a) is the (unconditional) S-curve if
a is a constant. If a changes rapidly from symbol to sym-
bol, the loop filter will smooth its effect on the error signal.
Therefore, the S-curve is obtained by averaging the above
equations over a certain set of values of &, which is de-
termined by the initial sampling offset and the number
of samples per symbol. This problem is addressed in the
subsequent discussion.

If B is an integer, the value of a remains constant
from symbol to symbol, namely, a; = « for all ¢. For this
case, the S-curve can be determined for a given y. When
v is 0.5, the S-curve is centered; otherwise, the S-curve is
biased slightly to one side. The phase error is certainly
biased if the S-curve is biased. If 8 is an odd integer, the
error signal is not zero when the phase error is zero. This
is a source of self-noise, as discussed before.

Next, consider the effect of a noninteger number of
samples per symbol on the S-curve. To illustrate the con-
cept, assume that 8 = 4.1. Suppose that the initial sam-
pling offset v is 0.7. Clearly, ag = v = 0.7, oy = 0.6,
a; =05, a3=04, 04 =03, a5 =02, ag = 0.1, a7y = 0,
ag = 0.9, ag = 0.8, ajg = 0.7, and so on. Consider a
system with a normalized symbol rate of 1 Hz and a one-
sided loop filter bandwidth of 0.05 Hz. The error-signal
fluctuation due to variation of « is averaged by the loop
filter in the same way as the fluctuation due to thermal
noise. Therefore, the S-curve is obtained by averaging the
error signal with respect to noise and all possible values of
«. For the example given here, the set of values for « is
{0,0.1,0.2,0.3, 04, 0.5,0.6, 0.7, 0.8, 0.9}. Figure 5 shows
the conditional S-curve for the # = 4.1 case with a = 0.5.
Figure 6 shows the unconditional S-curve for the 8 = 4.1
case after averaging over values of a belonging to the set
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. There is a
phase ambiguity area in the conditional S-curve in Fig. 5,
i.e, zero error signal for nonzero phase error. The phase
ambiguity is removed in the S-curve in Fig. 6 due to aver-
aging over a. Notice the small bias of the S-curve due to
the particular set of values for a.

Another example is the 3 = 4.11 case. The fractional
part of 3, i.e., 0.11, can be decomposed into the two com-
ponents 0.1 and 0.01. Both components contribute to the
values of ¢;. For instance, if ag = ¥ = 0.7, then oy =
059=0.7-0.1-0.01, and a3 = 0.48 = 0.7-0.2-0.02, ...
and so on. The same loop bandwidth is assumed as be-
fore. The variation of a due to the component 0.1 changes
quickly relative to the loop bandwidth, and the variation
due to the component 0.01 changes slowly relative to the
loop bandwidth. The S-curve is obtained approximately
by averaging the error signal over all possible values of a
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due to the fast component. The initial sampling offset will
drift slowly from time to time due to the slow component.
The slow component does not affect the instantaneous S-
curve, but it does affect the S-curve gradually by changing
the initial sampling offset. Therefore, the slow component
does contribute to the overall phase-error density function.
Note that the conditional density function for the phase er-
ror can be obtained for any given initial sampling offset.
The phase-error density function can then be derived by
averaging the conditional density function over the initial
sampling offset. The distribution function for the initial
sampling offset can be assumed to be uniform between 0
and 1 or can be determined by simulation.

Partitioning the fractional part of 8 into slow and fast
components can only be done approximately, and they are
determined by the loop bandwidth. Let 3 = ng + fz,1
+ fa,2, where ng is the greatest integer less than or equal
to 3, fp,1 is the fast component, and fz , is the slow com-
ponent. The choice of fg,1 and fg 2 is made solely by expe-
rience. In the following discussion, a criterion is provided
for justifying the choice of fg 1.

Let v be the initial sampling offset. The set of values,
denoted by Dg., which {&;} can take on, can be deter-
mined from 4 and § using the following procedure: sup-
pose that fg; contains k digits after the decimal point (for
instance, if 3,1 = 0.15, then k = 2). The basic incremental
unit g is defined as

g5 = GCD(10%f3,1, 10%)
10k

where GCD(a, b) is the greatest common divisor between
a and b. Then Dg ., is given by

Dpy = {7+ mgsl0 <m < (1/g5) - 1}

For instance, if ¥ = 0.1 and fg,; = 0.15, then g = 0.05,
and Dg 0., = {0.14+0.05m|0 < m < 19}. In terms of Dg ,,
the S-curve is given by

o) = Baep,, {9000}

where the expectation is performed with respect to all val-
ues of a in Dy ., which are assumed equiprobable. Let the
one-sided loop bandwidth be By and let the symbol rate
be R. A valid choice for f3; is to ensure that all values in
Dg  can occur in a 1/B time interval, i.e., to satisfy the
following equation:

<
Br—Rygp (5)



B. The Density Function and Variance of
Phase Error

The steady-state Fokker-Planck Eq. (2) is given by
dP 1 d?
S{a0mPom} = 5 = {BOMPOM}  (6)

In the above equation,

2B
E,Ng

AQAl) = - 9(Alr)

80 = (2% ) 50h)

where S(w, Aly) is the spectrum of the noise n)(t) defined
as

PA(E) = Fns actp  fe(Belk + m)|A, 7} = (s001)

dy] (7)

In order to use the above equation, S(0,Ajy) must be
found, which is a fairly complex task. In the subsequent
derivation, it is assumed that S(0, Aly) = WN,T/4. Thus
Eq. (7) can be simplified to

The solution to Eq. (6) is of the form

* 2A(yly) — 2240

B(yly)

P(Aly) = Ceexp [ /

A
P(Aly) = Cexp [— Bi‘?{’w /o g(ylv);dy] (8)

The phase-error bias E{A}y} is given by

1/2
E{\ly} = /1/2 AP(\ly) dA

The mean-square phase noise o%()|y) is given by

o*(Aly) = E{X*r} = (E{Al"})’

The phase ambiguity phenomenon is a direct result of
Eq. (8). Note that if g(yly) = 0 for —¢; < y < €3, the
phase error is uniformly distributed between —e; and e
when E, approaches infinity.

IIl. Discussion and Numerical Results

Figure 7 shows the phase-error variance versus symbol
signal-to-noise ratio (SNR) with an even integer number of
samples per symbol. Notice that the phase-error variance
approaches a limit as symbol SNR increases for the given
number of samples per symbol. That limit of the phase-
error variance is due to the phase ambiguity; thus it cannot
be eliminated by increasing the symbol SNR. The phase
ambiguity decreases as the number of samples per symbol
increases.

Note that the phase ambiguity phenomenon may have
an effect on the performance of weighted symbol detec-
tion. For illustration, Fig. 8 shows simulation results of
the MTLL of the all-digital DTTL for various symbol
SNRs and for 4 and 100 samples per symbol. The plot
depicts normalized MTLL, which is the MTLL times the
loop bandwidth. Notice that it usually takes a long time to
simulate the MTLL performance; therefore, the loop oper-
ation was purposely simulated at a very low loop SNR (on
the order of 3 to 9 dB) to guarantee loss of lock within a
“practical” time period. It is clear that the four samples
per symbol case (3 = 4) loses lock more often than the
3 = 100 case. In the DSN, the symbol loop SNR is so high
that the loop is expected to maintain lock over a whole
track. It is still expected that the MTLL for the g = 4
case will be less than for the 8 = 100 case, but both of
these will be large enough that lock is maintained over a
whole track.

In a practical communication system, Doppler and
Doppler rate are present due to the relative motion be-
tween transmitter and receiver. The effect of the Earth
Doppler rate on a symbol rate of 6.6 Msymbols/sec is about
1 mHz/sec, which is enough to guarantee that the number
of samples per symbol will not remain an exact integer
for long. Consider a scenario designed for § = 4 samples
per symbol, but due to Doppler rate, the actual number
of samples per symbol is 8 = 4.0000001. In this scenario,
the basic incremental unit is gg = 10~7. When the DTTL
is operating with a 1-mHz-loop bandwidth, the time con-
stant of the loop is about 1000 sec or 6.6 Gsymbols at a
symbol rate of 6.6 Msymbols/sec. Since the loop is effec-
tively averaging over all those symbols, the effect of the
10~7 basic incremental unit will be enough to smooth the
composite S-curve as discussed earlier. This is because
with a time constant of 1000 sec, Rgs/Br = 6.6 Gsym-
bols x10~7 = 660 3> 1 (Eq. 5). This effectively smooths
the S-curve so that the digital loop behaves like its equiv-
alent analog counterpart. For a loop time constant of
1 sec (1-Hz loop bandwidth), Rgs/Br = 0.66. However,
with a time constant of 0.2 sec (5-Hz loop bandwidth),
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Rgp/Br = 0.132; therefore, self-noise might become con-
siderable. But that case would still exhibit less self-noise
than the exact four samples per symbol scenario. So over-
all, the Doppler rate helps in reducing the self-noise. De-
pending on the actual parameters, the self-noise degra-
dation might become negligible. More simulations with
Doppler rates are planned to verify this concept.

IV. Conclusion

The all-digital DTTL with coherent or noncoherent
sampling is analyzed in this article. Two sampling schemes

are considered, i.e., instantaneous sampling and 1&D sam-
pling. The theory presented here is valid for both sam-
pling schemes. The effects of few samples per symbol and
of noncommensurate sampling rates and symbol rates are
addressed and analyzed. The phase ambiguity problem
due to a small number of samples per symbol is illustrated,
and it is shown that the phase ambiguity can be alleviated
when there is a noninteger number of samples per symbol
and the loop filter has appropriate bandwidth. A closed-
form expression for the S-curve is derived for any number
of samples per symbol. Finally, the interplay between the
loop bandwidth and the number of samples per symbol in
the reduction of self-noise is shown.
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The Advanced Receiver currently being developed uses a Costas digital loop
to demodulate the subcarrier. Previous analyses of lock detector algorithms for
Costas loops have ignored the effects of the inherent correlation between samples
of the phase-error process. Accounting for this correlation is necessary to achieve
the desired lock-detection probability for a given false-alarm rate. In this article,
botb analysis and simulations are used to quantify the effects of phase correlation
on lock detection for the square-law and the absolute-value type detectors. Results
are obtained which depict the lock-detection probability as a function of loop signal-
to-noise ratio for a given false-alarm rate. The mathematical model and computer
simulation show that the square-law detector experiences less degradation due to
phase jitter than the absolute-value detector and that the degradation in detector
signal-to-noise ratio is more pronounced for square-wave than for sine-wave signals.

I. Introduction

Costas loops are being used extensively in modern co-
herent communication systems to track both subcarriers
and suppressed carriers. In many applications, residual
carriers are being replaced by suppressed carriers as the
latter dedicates the total transmitted power to both car-
rier tracking and symbol detection simultaneously. This
has a clear advantage over residual carrier tracking, which
requires a fraction of the total transmitted power delegated
solely to that purpose, and hence, reduces the available
power that can be used for symbol detection. The dis-
advantages of Costas loops are that they require symbol
synchronization and suffer from an additional loss factor
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typically referred to as squaring loss, which is highly depen-
dent on symbol energy-to-noise ratio. Squaring loss is the
result of forming the product of the inphase and quadra-
ture signals to wipe out the data modulation, in order to
obtain a feedback error signal that is only a function of
the instantaneous phase error [1]. Another disadvantage of
suppressed carrier tracking is the issue of false lock, which
occurs either as a result of accumulated delay [2] or during
acquisition with frequency uncertainty greater than one-
half the symbol rate [3, 4]. The latter can be detected
through a false-lock indicator, as described in [3].

Lock detection is an important part of a tracking
loop’s operation and monitoring, as it provides an insight



into the tracking loop’s behavior in real time. Lock de-
tection basically serves as a binary indicator of whether
the loop is tracking the received signal or not, and during
loop start-up it also indicates whether or not the loop has
acquired the phase of the signal. There are mainly two
kinds of lock detectors for Costas loops, the I? — Q2?, or
square-law detector, and the | I | — | @ |, or absolute-value
detector [5]. Both have been analyzed in the past at high
loop signal-to-noise ratio (SNR), which basically assumes
zero phase-tracking error. At low loop SNR, the assump-
tion of zero phase jitter becomes inadequate and results in
system operating parameters that are different from their
design counterparts. Thus, a new model is required which
has to account for the phase jitter and the correlation be-
tween samples of the phase-error process. The latter is es-
sential in an accurate performance prediction analysis, in
order to operate the system at the desired lock-detection
probability for a given false-alarm rate. The analysis of
the detectors, including the phase correlation and assum-
ing either a sinusoidal or a square wave signal, is presented
in Section II. In the case of a square-wave, the analysis is
general and includes any windowing operation as described
in [6]. The discussion of the results and some simulated
data are shown in Section III, followed by the conclusion
in Section IV.

ll. Lock-Detection Analysis

Suppressed carrier tracking for binary-phase shift
keyed (BPSK) signals can be accomplished using a squar-
ing loop or a Costas loop [7]. The squaring loop relies on
wiping out the data by a squaring operation and tracking
the resulting residual double-frequency component with a
classical phase-locked loop. The squaring loop does not
require symbol timing, but results in an additional noise
term which becomes dominant at low SNR. On the other
hand, the Costas loop implements a phase discriminator
by forming the product of the inphase and quadrature sig-
nals. That too results in some degradation, commonly
referred to as the squaring loss. Depending on the de-
sign, both loops can be implemented with identical per-
formances for all practical purposes. The Costas loop has
various derivatives, each approximating the maximum a
posteriori (MAP) estimator at different SNRs [8]. For ex-
ample, a hard-limiter can be included in the inphase arm
to estimate the current symbol, and that results in less
squaring loss at high SNRs.

This article is concerned with the lock detection for
the all-digital 7Q loop, which is also a derivative of the
Costas loop with integrate-and-dump arm filters. All-
digital refers to the fact that the input waveform to the
loop is a sequence of samples and that the integrate-and-

dump arm filters are digital accumulators. The IQ loop
and square-law lock detector are depicted in Fig. 1 for the
square-wave case, with the optional windowing operation
on the quadrature channel. The analysis that follows will
be applicable for both sinusoidal and square waves. The
received waveform is digitized to produce the samples r;,
which are subsequently digitally mixed with the inphase
and quadrature references. The outputs of the mixers,
running at the sampling rate, are accumulated to detect
the received symbols. It is assumed that there are L sam-
ples per symbol and that perfect symbol synchronization
has been achieved. The accumulator outputs, now at the
symbol rate, are multiplied together to wipe out the data
and again accumulated to reduce the processing rate even
further. The output, running at a new rate (referred to
as the loop update rate), is the input to the digital loop
filter which provides a frequency estimate to adjust the
phase of the numerically controlled oscillator (NCO). The
lock detector processes the arm accumulator outputs at
the symbol rate, accumulates the result over M symbols,
and provides a binary decision on the loop status.

In the I and @ branches of Fig. 1, the signals accu-
mulated over L samples during the kth symbol interval are
given by

i = dip L\/Pp wi + nyi k=1,....M
and (H
.’L'Qk=dkL\/Pka+an kE=1,....M
where
2
wi = (1—Iuk I), up = —¢k, |grl<m
ug | ¢ |< 7W/2 (2)
v = < sgn(¢gx)W TW/2 <| ¢e < 7(1 — W/2)
2sgn(gr) —we mT(1-W/2)<| ¢ [<7

for a square-wave subcarrier and
wy = cos ¢

sin ¢y, | ¢ |< 7W/2

(3)

v = < sin(¢e W) 7W/2 <] ¢ (< 7(1 - W/2)

sin ¢y (1 —-W/2) <| ¢ <7
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for a sine-wave subcarrier, where Pp is the average data
power, d; is the data value of the kth binary symbol (£1
equally likely), ¢ is the subcarrier phase-estimation error
(radians) at time k, W is the width of the window in the
Q channel (i.e., the fraction of cycle of the reference signal
which has nonzero value W < 1 [W = 1 means no window
is used]), and nyx, nge are zero-mean white Gaussian noise
samples. From Eq. (1), the mean values and the variances
of z1; and zgg conditioned on ¢ and di are given by

HIk = dkL PD Wi 0’? = La?,
and 4)
HQr = dy L/ Pp vy og = WLU,Z,

where 02 = Ny B, is the noise variance of a received sam-
ple, Ny is the one-sided noise spectral density, and B, is
the Nyquist bandwidth. The equations that follow are ap-
plicable to both sine and square waves.

A. Square-Law Detector

The first algorithm considered detects the in-lock state
by producing a signal that is proportional to the cosine
of the phase error (in the case of a sinusoidal wave) and
averaging it over several symbols before comparing it to a
threshold 7. Referring to Fig. 1,

M

A
E ye 2T, wWhere yp =zh — :c?Qk (5)
k=1

An estimation of the performance of this lock detector re-
quires the first and second moments of z2, and :c2Qk con-
ditioned on ¢, which are readily obtainable:

2}, = ph + o} (62)

oh, = phe + 0 (6b)

23, = uh + 6ufiof + 307 (7a)
;‘g: = pdp + Gp%kaé + 305 (7b)

where prx, por, o3, and aé are given by Eq. (4). Using

Egs. (6) and (7), the variances of z}, and 22, become
respectively

(82)

var(z,) = dpjpof + 207
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and

var(zd) = 4pg,05 + 203 (8b)

The mean value of yi is obtained from Egs. (4) and (6) in
Eq. (5), namely

py. = L2 Pp(wi — v}) + Log(1 - W)

The variance of yg, 02, , will be the sum of variances of z3,
and z3,, and is obtained by using Eq. (4) in Eq. (8), ie,,

2LP,
021) (WE+Wod)+1+ Wz]

n

azk = 21320:‘1 [

The lock-detector signal z is the accumulation of My, sam-
ples, which are highly correlated due to the phase-error
samples. The mean value and variance of z, u,, and o2
are derived in the Appendix, where it is shown that

ne = M(L2Ppd + Lo2(1- W)) (9)
and
o2 = M2LAP}(g — d*) + 4M L3 Ppol(f + hW)
+ oML (1 + W?)

(10)

The parameters d, f, h, and g depend on the waveform
type and are given by (b S Wr/2)

s
4 —
8 —  [4\ 1 &
g:l—‘;l |+<;) v c(k)d(k)
k=0

where



and

2 o~ 0'3 erf b
,/20§

1= () (o)

for a square-wave subcarrier, and

d= exp(—?ai)
f=05 (1 + exp(—QUZ,))

h= 0.5(1 - exp(—?ai))

1 M-1
7= 377 X (K

NoB 1
2 0D sc
7 = ( o )W(“’ 2E,/No)

for a sine-wave subcarrier. Note that Egs. (11) and (12)
specify the variance of the phase jitter, assuming the linear
loop model. For example, at 15 dB of nominal loop SNR,
the actual variance ai can be about 1 dB larger. Nominal
loop SNR p is defined as 1/o3, where ¢ is obtained from
the linear model; B,. is the one-sided noise bandwidth of
the Costas loop, and E, /Ny is the symbol energy-to-noise
ratio. The constants ¢(k) and d(k) are defined as follows:

(12)

fork=0
c(k) =
2(M—-k) fork=1,2,...,M -1

for both waveforms, but

5 b
d(k)é// [ 61 || é2 | p(d1, b2, 7 )db1d2

-b —b

for a square wave and

0.5(1 +exp(—203)) for k=0
d(k)=

exp(—403) cosh (20@0(‘@)) k=1,2,....M-1

for a sine wave; C(7i) is the correlation function of the
phase-error process in the tracking loop, which is assumed
to be of the form given by Eq. (A-9) [9], and the second-
order joint probability density function of the correlated
phase process p(¢1,#2,7t) is assumed as in Eq. (A-10).
When the loop is in-lock and assuming high loop SNR,
¢r — Ofor all k. Hencew? — 1 and v} — 0, and the above
mean value and variance of the detector’s signal simplify
to

i = M(L2PD + Lo2(1— W))

LPp
=+

2
03=4ML2a;§[ 1+W]

2

n

which are true for both square-wave and sine-wave sig-
nals. Note that in the above equation the following rela-
tion holds:

because L = 2T, B, (Nyquist sampling), where T; is the
symbol time, 62 = NyB,, and T, Pp = E,, the energy per
symbol.

B. Absolute-Value Detector

For the absolute-value detector, the squaring opera-
tion in Fig. 1 is replaced by an absolute-value operation,
and the algorithm defining the new lock detector becomes

(13)

M

A
E ye 27, where yr=|zn|—|zqkl
k=1

In order to estimate the performance of this lock detector,
the first and second moments of | z7x | and | zqx | are
needed, again assurmning a white Gaussian noise process at
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the phase-locked loop input. These moments, conditioned
on ¢y, become

—a
lzie | = rix

(14)

— A
| zqr | = o

E,v?
=L/FP f tk
D Vg €r ( NOW)

+\/2LWU ex —-EEE—
™ " p N()W

The second moments of | ;i | and | zgx | are identical
to the second moments of zj; and 2qg, and are given by
Eq. (6). The mean value of y; follows from Egs. (13) and

(14):

A
Hyk =TIk —TQk

ES 3 2
=L\/Pp (wkerf( e wﬁ) —vkerf( f/'o;;;))

and the variance of yy is
02, = L*Pp (W + o}) + Loa(1+ W) — (F1” + Tz *)

The lock detector’s signal z is again obtained by adding
My, samples. The mean and variance of z are found by
averaging the first two moments of z over the correlated
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phase process in the tracking loop. This is carried out in
the Appendix and gives

Be = Mp,

E, 02
LvPp f ‘/_ 2'_
D |wer ( w verf( N()I’V)
[2L E, A
Y n (exp(—mw2>—\/Wexp(—]€—ol}W))]

(16)

=M

o2 = M(L?Pp (W7 +77) + La2(1+ W)

+Y_> (Frt1; +Tqite;) —

all 1,5
i#]

M? (77 +73°)

(17)

The bar over the product terms denotes expectation over
the joint probability density function of ¢;, ¢;, assumed
to be of the form given by Eq. (A-10), and ry, roi are
defined by Eq. (14). Because no closed-form solutions for
the above averaging operations are known, the averaging
was done numerically. When the loop is in-lock and at
high loop SNR, ¢ — O for all k. Hence, w — 1 and
vi — 0, and the above mean value and variance of the
lock detector simplify to

L\/Pp erf <\/1€:0>
4+ \/?Jn (exp (—]E\;—;) - W)] (18)

L*Pp + Lo2(1+ W)

2
E, 2L E,
- (v e () oo ()

(19)

p=M

ol=M




C. Probability of Detection and of
False Indication

During subcarrier detection, each z sample is com-
pared with a predefined threshold 7, and the lock detector
decides that the loop is in-lock when z > 7. It is possible
that even when no signal is present, z will occasionally be
larger than 7. In this case, the lock detector will mistak-
enly declare an in-lock condition. The probability of false
indication is

/ exp ( (z = p0)” ) dz
\/27r0'30 202

= Longe [T A2 (20)
2 202,

where 1,0 and o2 are the mean and variance of the lock-
detector signal in the out-of-lock state, and erfc(z) is the
complementary error function (erfc(z) = 1—erf(z), where
erf(z) is the error function defined i m the Appendix). For
the square-law detector, p,o and o2, are obtained from
Egs. (9) and (10) by making Pp = 0 (or, equivalently,
assuming that @ and ¥ in Eq. 4 are zero), namely

Hi0 = MLoZ(1 - W)

o2y = 2M Lo} (1 + W?)

whereas for the absolute-value detector, Egs. (18) and (19)

result in
{2L
Mo =M __’r"an(l_\’w

02y = MLco? (1 - %) (1+ W)

(21)

Given a desired probability of false indication Py, the
threshold 7 is obtained by solving Eq. (20) and setting
it equal to

202, erfc™! (2P;) + pzo (22)

where erfc™!(:) is the inverse complementary error func-
tion. When the loop is in-lock, it can be argued via the
central limit theorem that the random variable z is ap-
proximately Gaussian, with mean and variance obtained
earlier for either the square-law or the absolute-value de-

For either detector, the probability of detection

1 7 (z - ,uz)2
Sro? /exp ( 202 dz
1 T— U,
= —erfc
2 ( Fz)

where g, and o2 are given by Egs. (9) and (10) or by
Eqgs. (16) and (17). Defining the detector’s SNR as

tector.
18

2
A K

then, for p,o = 0 (W = 1), the probability of detection in
terms of SNR, can be expressed as

1 020 -1 SNR,
Py= 3 erfc ( = erfc™ (2P;) — 3 )

The above equation shows the dependence of the proba-
bility of detection on the detector’s SNR. Phase jitter in
the tracking loop degrades the detector’s SNR by a factor
D:

D = SNR, /SNRz (ideal) (24)

where SNR; (ideat) 18 the detector SNR, assuming infinite
loop SNR, i.e., no phase jitter. SNR, (ideal) is computed
from Eq. (23) usmg the high-SNR expressions in Eqs. (18)
and (19) for p, and o2. For a given W, M, loop SNR p
(p= 1/0 where 0'4, is given by Eq. 11 or 12 repectlvely)
and Py, the detector’s SNR must be increased approxi-
mately by the factor 1/D in order to achieve a desired
probability of detection.

lll. Discussion and Numerical Results

Computer simulation was performed in order to check
the predictions of the analysis. Figure 2 depicts the prob-
ability of lock detection versus symbol energy-to-noise ra-
tio E, /Ny for both sine-wave and square-wave signals, as-
suming ideal conditions, i.e., no phase jitter in the track-
ing loop. The square-law detector performs slightly better
than the absolute-value detector for a given symbol SNR.

The degradation in detection probability for a finite-

loop SNR is shown in Figs. 3(a) and 3(b) for the square-law
and absolute-value detectors, respectively. The threshold
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7 was set to achieve probabilities of false detection Py of
10-1 and 10—, and detector SNR was set to achieve nomi-
nal probabilities of detection Py of 0.99 and 0.90. Nominal
probability refers to the case of no phase jitter in the loop.
It is clear that sine waves produce less degradation than
square waves, and this is true for both detection schemes.

The performance of both detectors is compared in
Fig. 4 for square-wave signals only, since the difference
in performance is almost negligible for sine-wave signals.
The performance with respect to detector SNR is shown
in Fig. 5 for a 15-dB loop SNR. The improvement in de-
tection probability due to windowing is clear for both de-
tectors and can result in several decibels. Finally, Fig. 6
depicts both theoretical and simulation points of detec-
tor SNR degradation D (defined in Eq. 24) versus loop
SNR. The degradation in SNR is slightly larger for the
absolute-value detector than for the square-law detector
when tracking a square wave, but less when tracking a
sine wave, and it can be as large as 3 dB depending on the
operating parameters.

The results are summarized in Figs. 7 and 8. The
detector SNR. as a function of E,/Ny is shown in Fig. 7
for both infinite and 15-dB loop SNR, and for W = 1.0
and 0.25. When W = 1, a good rule of thumb is that
the detector SNR varies linearly with E, /Ny, with slope
equal to 2/3 on a decibel scale. For different values of M,
the curve will be scaled vertically in a linear fashion. Fig-
ure 8 depicts the detection probability for the square-law
and absolute-value detectors respectively, as a function of
E,/Ny for both infinite and 15-dB loop SNR. The con-
clusion from Fig. 8 is that when operating at low loop
SNR (i.e., 15 dB), an extra 1.5-dB increase in E,/Ng or a
comparable increase in M will achieve the detection prob-
ability which was designed for assuming infinite loop SNR.

For design purposes, Fig. 9 can be useful since it
depicts both the detection probability and the required

threshold as a function of M for both detectors. As a
design example, suppose that the absolute-value detector
is required to operate at Py = 10~* and P; = 0.99, and
that the signal is a square wave with symbol rate 7, = 80
symbols per second, E,/Ny = 0.0 dB, and loop SNR =
15 dB with a quarter window (W = 0.25). Figure 9 indi-
cates that at least 90 detector samples (y;) are needed to
achieve 0.99 probability of detection.

Setting M = 100 (integration time = 1.25 sec), 7
is obtained using Eqgs. (21) and (22), with P; = 10~*.
Figure 9 predicts that 7 should be set to 46, assuming
that the outputs of the integrate-and-dump devices are
scaled by the factor 1/4/2¢2L. Using Fig. 7 (M = 30),
one can check that when the detector is in-lock, SNR, ~
13 + 10log;,(100/30) = 16.3 dB, where scaling was per-
formed to extend the results of Fig. 7 for M = 100.
This is confirmed in Fig. 5, which depicts Py = 0.99 for
SNR, = 16 dB.

IV. Conclusion

This article presents a mathematical model of the
performance of two lock detectors for Costas loops: the
square-law detector and the absolute-value detector. The
model concentrates on the impact of phase jitter in the
tracking loop on the performance of the lock detectors.
Results of the analysis were verified by computer simula-
tion and show that low loop SNRs result in a degradation
in probability of lock detection, the amount of which is
dependent on the scenario of interest. That decrease can
be overcome by properly readjusting the design parame-
ters. It was further shown that the square-law detector
experiences less degradation due to phase jitter than the
abolute-value detector, and that the degradation in de-
tector signal-to-noise ratio is more pronounced for square-
wave than for sine-wave signals.
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Appendix

Derivation of Detector’s First Two Moments at Low Loop SNR

A. Square-Law Detector

Using Eq. (5) with Eq. (4), the expression for lock-
detector signal is rewritten as follows

Yr = LZPD (wf - v,f) + (n'}’k — nék)

+2dx L/ Pp (wknie — vinQx)

=ar+b +ck

M
z= Z (ak + b + Ck) (A-l)
k=1

To assess the performance of the lock detector, the first two
moments of z are needed. For a square-wave subcarrier,
w}—v}=1-2]¢;| and for a sine-wave subcarrier,
w? — v = cos2¢;. Assuming that ¢ is a zero-mean (no

Doppler) Gaussian phase process, it can be shown that

2 b2
1o oo

(A-2)

and

$% = o3 erf LI osbexp (—- b—22) (A-3)
/205 4 204

where b 2 KZ"—, o2 is the variance of the phase-jitter process
in the subcarrier loop, and erf (z) is the error function
defined as

erf (z) 2 -\/2—; /Ox exp (—t?)dt

At first glance, Eq. (A-3) seems to express the variance
of the phase-error process as a nonlinear function of itself.
This is not the case since ¢ is the variance in the window
of the loop, and o2 is the variance integrated over the
complete density. This subtle effect is due to the Gaussian
assumption, which approximates a density over a finite
interval by the Gaussian density which is over an infinite
interval. Numerically, ¢2 and 0'3, are very close for all
practical values of loop SNR. Note that the moments of

Egs. (A-2) and (A-3) are independent of k. The expected
value of z is

pa = M(L2PDd +Lo2(1- W) (A-4)

where d is the signal degradation factor due to phase jitter
in the tracking loop, and ¢ = 0. Using Eq. (A-2) results

m
2\"*® b2
d—1—2<7—r'> T4 (1—-6)(]) (—-273;))

for a square-wave subcarrier, and
— 2
d = exp (—20'4,)

for a sine-wave subcarrier. To compute the variance of z,
Eq. (A-1) is used to get

M M

M M
2= AE Z 9i9; +E Z (n}; = ndy) (nd; — nd;)

i=1 j=1 izl j=1

M M M
+ BZ(UI:”II’ — vengi)’ + CZ Z g: (n}; — nj;)
i=1

i=1 j=1

where A = L*P}, B = 41°Pp, C = 2L%Pp, and ¢; =
(w? —v?) = (1 - 2| ¢;|) for a square-wave subcarrier. In
the above equation, six terms were left out because their
expected value is zero. Taking the expected value of 22
first over the thermal noise, and second over the phase

process in the tracking loop, the following is obtained:
22=LPAM%g + 2M L202(1 4+ W?)
+ MLl (1 - w)?
+4ML3Ppal(f + hW)
+2M2L%62(1 - W)d (A-5)
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where

o

l
s
M=
g

T

(A-6)
— 4
— — vl
h = ’U: = -ﬂs ¢
for a square-wave subcarrier and
f= w_f =cos?¢ =05 (1 + exp(—?cri))

(A-7)

h=sin?¢ =05 (1 - exp(—2a§,))

for a sine-wave subcarrier._ The variance of z can be found
from the relation o2 = 22 — (Z)2. Using Egs. (A-4) and
(A-5) results in

o2 = M L P2(g — d%) + AML3Ppa(f + hW)

+2ML%ei (1 + W?) (A-8)

Note that at high loop SNR, ¢ - 1,d— 1, f =1, h -0,
and Egs. (A-4) and (A-8) reduce to

p: = ML*Pp + MLo2(1 - W)

LP
2D +
o

n

1+W"]

o2 =4ML%c} [ 5

as they should. In order to evaluate g, one must know the
correlation between samples of the phase-error process in
the tracking loop. That was obtained by simulation and is
shown in Fig. A-1. A good closed-form model is given by

R(r) = 03C(1) (A-9a)
where
C(T) - (1 — | gg; l) exp (—1.25BLT) (A-Qb)

and where o2 is the closed-loop variance of the phase pro-
cess and By is the one-sided loop bandwidth. In order
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to evaluate g, one needs to know the second-order joint
density function of the phase-error process p(¢;, ¢;, 7). As
an approximation, it is assumed to be a two-dimensional
Gaussian density specified by the means, variances, and
correlation coefficient R(7), which is obtained by simula-
tion. Hence,

1
2n/R?(0) — R%(1)

p(di, 65, 7) &

o (_ R(0)47 = 2R(r)dids + R(ow?)
2 (R?(O) - R2(T))

1
B 2r03\/1 - C?()

- (_ 62 — 20(r)bid; + ¢,2) (A-10)
203(1- C(r))

Here g can be evaluated from the following:

] MM b8
9= ;;_/b_/b 9:9;p(¢i, 65, mij)ddidd;  (A-11)

Tij = TL(Z—]) =ti —tj

Expanding Eq. (A-11) for the square-wave subcarrier re-

sults in
8 — [4Y’
g= (1—;| +(%) s)
where
| MM b b
S= 3z E Z/ / | 61| #2 | p(#1, b2, Tij )db1dd2
i=1 j=17, 4

(A-12)

The correlation function in Eq. (A-10) is symmetric, i.e,
R(7i;) = R(7ji), and depends only on the magnitude of
the difference k =} i — j |. This property allows the double
summation in Eq. (A-12) to be reduced to a single sum-
mation:

M-1

5= % > c(k)d(k)
k=0



where ¢(0) =M, c(k) =2(M — k) fork=1,2,..., M -1,

and

b B
d(k)=// | 61 11 62 | P61, b2, 7 )ddsdds

-b -b

Note that Y pr o' (k) = M2 as it should. For k = 0, the
above probability density function (pdf) reduces to a delta
function times a zero-mean Gaussian pdf with variance ai,
so that

[ é1 [ 62 =02

— 2
1=/~

the first term of Eq. (A-8) can be rewritten as follows:

4\? 2
o, =M2L*P} (;) (s - —ag)

It can be shown that the lower bound of the above equation

equals
4\’ 2
o = ML*P} (;) (1 - ;) ol

Keeping all detector parameters constant, as the loop SNR
decreases (i.e., ag increases), p,, 02, SNR,, P;, and Py
decrease.

Because

For a sine-wave subcarrier,

M-1

— 3 c(k)d(k)

k=0

where ¢(k) is the same as in the square-wave subcarrier
case, and

0.5(1 + exp(—?ag)) for k=0
d(k) =

exp(—4a§) cosh (20‘¢C(Tk)) k=1,2,...,M-1

B. Absolute-Value Detector

At low SNR in the tracking loop, the mean value of
the detector’s signal 2z is obtained by taking the expected
value of y; (Eq. 15) over the phase process in the tracking
loop, and multiplying the result by M (the number of y;
samples):

1, = M (Ti% — To%)

E Ev?
— LAY I L
=M [L Pp werf( N, w ) verf( NOW)
[2L E E, v?
= —2202) =
+ - on (exp( Now ) %% exp( A W))]

where w and v are defined by Eq. (2) or Eq. (3), and

rrx and rgi are defined by Eq. (14). The variance of z is

obtained from o2

= z2 — 7%, namely

M M M
= Z{x1j||x1j1+zz|ij||ij|

i=1 j=1

IWE

1

[y

i

M M M 2
=23 > Tarjllzqi | HIQJI—(E zrj | =l zqi |>
i=1

i=1 j=1

.,

The following is now obtained:
o= M(L’-PD (w_2+ v_2) + Lo? (14 W))

+2_2 (7 + 7qirg;) — M* (71" +7¢°)
all i,
i#]

where again r; and rg are defined by Eq. (14). Unfortu-
nately, closed-form solutions for most of the above equa-
tions are not obtainable and their evaluation has to be
done numerically.

The double sum in the above equation equals
M-1

c(k)d(k)
k=1
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where c(k) = 2(M — k) for k=1,2,...,M -1, and

[

d(k) = / /[TI(¢1)T1(¢2)+7’Q(¢1)7‘Q(¢2)]

b s
x p(é1, 2, 7 )dd1dd2

where the probability density function is again approxi-
mated by Eq. (A-10). An upper bound of o2 is

M(L2Pp + LoZ(1+ W) - (77 +75%))
and a lower bound is

M (L2Po(f +h) + Lo2(1+ W) — (77 +757))

where f and h are defined in Egs. (A-6) and (A-7).
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Tracking of interplanetary spacecraft equipped with optical communications
systems by using astrometric instruments is being investigated by JPL. Existing
instruments are designed to work at night and, for bright sources, are limited by
tropospheric errors. To provide full coverage of the solar system, astrometric track-
ing instruments must either be capable of daytime operation or be space-based. The
integration times necessary for the ground-based daytime photon statistical errors
to reach a given accuracy level (5 to 50 nanoradians) have been computed for an
ideal astrometric instrument. The required photon statistical integration times are
found to be shorter than the tropospheric integration times for the ideal detector.
Since the astrometric accuracy need not be limited by photon statistics even under
daytime conditions, it may be fruitful to investigate instruments for daytime optical

tracking.

l. Introduction

Several observables for spacecraft navigation based on
a laser telemetry system are being investigated. One such
observable is the difference in direction between the space-
craft and a cataloged reference object in the same field
of view of an astrometric telescope. The error for such
a ground-based differential astrometric measurement in-
cludes the directional error of the reference source, the
photon statistical error, and the error induced by index of
refraction fluctuations in the troposphere. The best condi-
tions for making differential astrometric measurements are
at night, when the low background light levels lead to small
statistical errors, and at high angles of elevation above the
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horizon, where the troposphere errors are smallest due to
the short path length through the atmosphere.

Unfortunately, on any given day only a small portion
of the solar system can be observed at high elevations dur-
ing the night. In Section II, the daily available observa-
tion times for the planets are examined for the cases in
which observations are restricted to nighttime and limited
in elevation. All the planets suffer seasons in which no
nighttime viewing is possible, corresponding to periods of
low Sun-Earth-Probe (SEP) angles. While nighttime an-
gular position measurements might augment other observ-
able types during a fraction of a mission, critical parts of



a mission may take place at low SEP angles'due to launch
criteria. The restricted nighttime visibility implies that
ground-based astrometric observations of laser-equipped
spacecraft may have to cope with the daytime sky back-
ground.

In Section III, the photon statistical error of an as-
trometric measurement in the presence of a background is
analyzed. In Section IV, some specific examples of the pho-
ton statistical error are presented. In Section V, a simple
model of the tropospheric error is discussed. The relative
size of these errors is affected by the angular separation
of the reference source and the spacecraft. A larger sepa-
ration is more likely to allow the use of brighter reference
objects and result in a smaller photon statistical error. A
small separation would require the utilization of fainter ref-
erence objects but would decrease the tropospheric error.
The smallest usable field of view is set by the density of
the catalog stars. It was expected that in the mid 1990s
the Hipparchos mission would provide a catalog with an
average of 2.5 stars per 1-degree by 1-degree field with ini-
tial accuracy of 10 nrad per component and proper motion
uncertainty of 10 nrad/year [1]. The average brightness of
reference sources in a 1-degree by 1-degree field is magni-
tude m, = 8 [2]. Using magnitude m, = 8 and 1 degree
for the source-spacecraft separation, it is found that the
integration times for daytime observations with 50 nrad
accuracy are about 30 minutes.

For the error models used here, the tropospheric error
for such measurements is larger than the photon statistical
error. However, the daytime photon signal-to-noise ratio
is very unfavorable. Existing astrometric instruments, de-
signed for nighttime operation, are not able to work in
this regime. Limitations imposed by real detectors or by
systematic effects such as sky brightness variation may be
much larger than the photon statistical error.

Il. Nighttime Planetary Viewing
Limitations

To demonstrate what fraction of a mission trajectory
would be inaccessible to nighttime astrometric measure-
ments, the number of minutes per day that each planet is
visible from Goldstone in the night sky has been computed.
Here “night” has been defined as the time that the sun is
below —15 degrees elevation. This value for sun elevation
was chosen to correspond roughly to the time of astro-
nomical darkness. Since the astrometric error depends on
elevation angle through the elevation dependence of the
troposphere, two different minimum elevation cutoffs for
the planets were included.

Figures 1-7 are plots of the number of minutes per day
that Venus, Mars, Jupiter, and Saturn are above 10 degrees
or 30 degrees elevation with the sun below —15 degrees for
the time span of 1990 to 2000. Mercury is almost never
visible in the dark sky and is not plotted. Venus is al-
ways at low elevation, and nighttime astrometric tracking
is possible less than half of each year. The outer planets
are unavailable for 25 percent or more of each year. These
figures suggest that visibility limitations will severely af-
fect the utility of astrometric tracking if it is limited to the
nighttime hours.

IIl. Photon Statistics of an
Astrometric Telescope

This section presents an estimate of the accuracy lim-
itation placed by photon statistics on an astrometric tele-
scope in the daytime. This category includes Ronchi-ruled
telescopes and charge-coupled device (CCD) instruments.
An ideal detector is able to record the position on the fo-
cal plane for each detected photon. Any real instrument
will have larger photon statistical errors than this ideal in-
strument. CCD instruments are capable of dividing the
image of a point source into many pixels and can approach
the ideal detector scheme. However, limits on the size of
CCD arrays limit the fields of view of such instruments.
In a Ronchi telescope, a moving ruling is used to modulate
the light incident on the detector with position informa-
tion derived from the detected modulation [3]. For present
designs, the field of view must be larger than the image of
the star. This makes Ronchi telescopes more susceptible
to background light problems than CCD instruments.

The ideal astrometric telescope tracks a source for a
time T and records the plane-of-sky coordinates (£,1) = Q
for each photon detected. The troposphere and instrument
resolution cause the photons to be smeared in the plane of
the sky. For simplicity, the photon spatial distribution
about the true source direction is assumed to have the
Gaussian form

1(§-8,)=BT +

2ro? 202

exp [w] W

where B is the number of background photons per unit
solid angle per unit time, €, is the true source direction,
and S is the number of signal photons per unit time. This
distribution is a reasonable approximation to a smeared
point source in a uniform background and has been suc-
cessfully used in fitting high-precision small-field images
[4]. The width of the Gaussian is determined by the ap-
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parent diameter of a point source. This apparent diame-
ter as determined by the turbulence of the atmosphere is
commonly called the seeing angle. The full width at half
maximum of the Gaussian (2.350) is here set equal to the
seeing angle.

Measurement of the source direction consists of
recording the arrival of n photons and the plane-of-sky
coordinates for each detected photon. The maximum-
likelihood method can be used to estimate the source di-
rection. The likelihood function L(,) is the probability
of recording n photons with the set of arrival directions
{ﬁk} given an assumed source direction Q..

The photons are distributed in time according to Pois-
son statistics. The expected number of detected photons
is given by

N = / 1(§)d*Q (2)

where the integral is taken over the field of view of the
telescope. The probability of detecting n photons is then
given in [5] as

N7re—N

n!

P(n) = 3)

The (normalized) probability of any one photon arriving

with direction Q; given that the source is at direction Qg

is

I(ﬁk - Q.a)
N

P((lSa) = (4)

Assuming that the distribution for each photon-arrival di-
rection is independent, the probability of finding n photons
with the set of photon directions {Qk} is

n

. N“e_N d I(Q‘k—ﬁa)
L(Qa)—( ; )kIzll ~ (5)

The maximum-likelihood estimate of the source di-
rection is the assumed source direction that maximizes the
likelihood function. In the limit N > 1 the error asso-
ciated with this estimate is given by the Konig-Kramer

bound [6]
1/ 8%log L(S)
7= <-T> (6)

Qs
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where og is the variance of the source direction estimate
in the £ direction, and the expectation value is the average
taken over all possible numbers of detected photons and
sets of directions. Since the assumed photon distribution
is symmetric, the error is the same for the 7 direction.
With some work, the error expression of Eq. (6) can be
applied to the likelihood function given in Eq. (5) to give
the error in the source direction measurement as

2 2r0?B
gg:;_Tf(.—_"S ) (7)

where the function f(a) is given by
2 -1
1 [® 23 ®
f(e) = [5 J d:c] ®)

In the limit of no background (B = 0), @ =0, and f(0) =
1; the directional error is then given by

g

o = VT 9)

Rewriting Eq. (9) gives the integration time to reach a
specified accuracy o¢ as

(10)

In the limit of high background, the position error is given
by

4 8no?B
= —_— 11
0¢ m S ( )
Rewriting Eq. (11) gives
a? 8ro?B
(w5 e

The effective signal-to-noise ratio for determining the
source direction is S/(8wo?B) where the combination
870? B is the effective background rate.

IV. Examples of Photon Statistical
Integration Times

In this section, the integration times needed to reach
a given accuracy for a reference star and for a spacecraft
at 10 AU with a 2-W laser are given. The parameters as-
sumed for the detector, the spacecraft, and the background



are summarized in Table 1. The derived photon rates and
integration times are listed in Table 2.

The photon rate from a star of visual magnitude m,
is given by [2, 7] as approximately

w A T
_ —0.4my—-745 2
S=10 prmp (h_c) AX 7 dinaTlratlrons Na
(13)

where X is the central wavelength, h is Planck’s constant,
¢ is the speed of light, AX is the wavelength pass band,
d, is the telescope diameter, 7, is the atmosphere trans-
mission factor, 7,4 is the receiver obscuration factor, 7., is
the receiver optics efficiency, 7y is the narrow-band filter
efficiency, and 5, is the detector quantum efficiency. Since
refraction will cause image smearing if the wave band is
too wide, a value AX = 0.1 um, centered at A = 0.532 um,
will be used below. For the receiver efficiencies given in
Table 1 and for a star of magnitude m, = 8 the signal rate
is 6.8 x 10° photons/second.

The photon rate received from the spacecraft is given

by [7] as
s=n(2) () () (%)

X MaTloThpTlallra’lro (14)
where P; is the transmitted laser power, A is the wave-
length, d; is the transmitter objective diameter, r is the
spacecraft-receiver distance, 7, is the transmitter obscu-
ration factor, n:, is the transmitter optics efficiency, and
nip is the transmitter pointing efficiency. The parameters
used here are taken from an example by Kerr [8] and listed
in Table 1. These factors combined with the nominal re-
ceiver used above yield a detected photon rate S of 2.6 x 104
photons/second for the spacecraft.

A critical parameter for the tracking telescope is the
atmospheric seeing. At many sites, the daytime seeing is
worse than the nighttime seeing by a factor of 5 to 10 [9,
10]. However, at some solar observatory sites, the seeing
is 5 to 10 urad (~1 to 2 arcseconds) both day and night.
At the Sacramento Peak site, the daytime seeing angle is
reported as being less than 10 purad 80 percent of the time
and better than 5 urad 50 percent of the time during the
day [11]. Since 10 prad is similar to other reported daytime
seeing values (see [11] and references therein), 10 grad full
width at half maximum will be taken as a nominal value.
This corresponds to a value ¢ = 4.3 yrad for the photon
distribution.

The background photon rate is given by

A T
(870%)B = (8ncd?) I (-’-1—) A)\Z & Mromranyma  (15)

(¢4

where I is the background spectral irradiance. The
daytime background spectral irradiance depends on the
weather, the sun elevation, and the Sun-Earth-Probe
angle among other factors. The value for I of
100 W/(um m? steradian) at 0.532 pm {12] will be used
in the following example. Kerr gives values ranging from
30 W/(um m?2steradian) at 90 degrees from the sun to
500 W/um m? steradian at 10 degrees to the sun [8]. Us-
ing the receiver values of Table 1 and 2-arcsec seeing, the
daytime background rate is 2.6 x 10° photons/second. Us-
ing a narrower filter will not improve the signal-to-noise
ratio for the reference star since the signal photon rate
depends on the bandwidth in the same way as the back-
ground; narrowing the filter bandwidth reduces the signal
rate and increases the needed integration time. However,
the laser signal is narrow band and narrowing the filter
bandwidth improves the spacecraft signal-to-noise ratio.

Table 2 presents the integration times needed to reach
50-nrad or 5-nrad accuracy for the reference star and the
spacecraft. Several different filter bandwidth options have
been used. For the case of the 0.03-nm filter, the filter
transmission efficiency is reduced to 0.4 [8]. The inte-
gration times for the photon statistics error to reach the
5-nrad level are not prohibitively long provided that the
spacecraft and star are separately filtered. However, sev-
eral factors may combine to lengthen the integration times.
The photon rates for the reference star plus background are
very high for photon counting devices. Detector dead time
and noise will be significant effects. A Ronchi telescope in-
tegrates the background over a fixed field of view. Unless
the field of view is limited to the size of the source image
and precisely positioned, the photon statistics error will
be much worse for a Ronchi telescope. In any case, the
ruling modulation reduces the photon flux by a factor of
2, correspondingly increasing the integration time. If each
coordinate is measured separately, the times will double
again.

Effects other than counting problems are important.
Since the integration time increases as the fourth power
of the seeing, the site selection is critical. For the ref-
erence star, the signal-to-noise ratio may be worse than
10~3. This may pose unrealistic requirements on the dy-
namic range and linearity of the detector. There is also
the possibility that variations in the background intensity
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over the period of integration could degrade the accuracy
of the star position.

V. Tropospheric Integration Times

The photon statistics contribute an angular position
error for the spacecraft and the reference object. The error
in the angular difference between the spacecraft and refer-
ence object is also affected by variations in angle of arrival
imposed by the troposphere. The integration time require-
ments imposed by the troposphere may be computed from
a result by Lindegren [13]. Lindegren’s result is derived
from a frozen turbulence model of the atmosphere with
a power law structure function. The turbulence causes
angle of arrival variation as the frozen turbulence moves
with the wind velocity. The variations in angle of arrival
from two point sources are computed, given some assump-
tions about the atmosphere structure and averaging over
wind direction. Lindegren’s paper compares his model to
several experimental results, including stellar position and
solar diameter measurements, with reasonable agreement.

The expression for the error oy in the difference angle
# between two sources is

og = 6.3 x 107097~ (16)

where oy and # are given in radians and the integration
time T in seconds. Solving Eq. (16) for the integration

time necessary for a given angular accuracy o4 gives

T =4.0x 107194052 (17)
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This expression applies near zenith and with about 1-
arcsec seeing. Results are expected to be worse for lower
elevation angles and worse seeing.

For two objects 1 degree apart, this implies an in-
tegration time of 59 hours to reach 5-nrad accuracy and
35 minutes to reach 50-nrad accuracy. These times are
long compared to those imposed by the photon statistics
for a magnitude 8 star. There is a possible trade-off by
narrowing the field of view and utilizing fainter reference
stars. However, this implies a larger catalog eflort. By
including more reference objects in the field, there is the
possibility of reducing the troposphere error.

VI. Discussion

The photon statistics do not rule out the operation
of astrometric telescopes for daytime optical tracking of
spacecraft. Given the simple assumptions used in Sec-
tion III, the tropospheric error dominates the photon sta-
tistical error for a magnitude m, = 8 star and 1-degree
source-spacecraft separation. However, existing instru-
ments are not capable of operating in the daytime because
of the extremely poor signal-to-noise ratio and large pho-
ton fluxes. Finding a suitable detection scheme for day-
time operation will be a challenge. Since the integration
times required are many minutes, systematic effects and
variations in the background level may wash out the posi-
tion signal. It would be useful to try differential position
measurement in the daytime at a solar observatory with
a CCD camera to begin an investigation into systematic
background effects.
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Fig. 1. Plot of the number of minutes per day (24 hours} for
which Venus is visible above 10 degrees in the nighttime sky.
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The new Viterbi decoder for long constraint length codes, under development
for the DSN, stores path information according to an algorithm called “traceback.”
The details of a particular implementation of this algorithm, based on three memory
buffers, are described. The penalties In increased storage requirement and longer
decoding delay are offset by the reduced amount of data that needs to be exchanged
between processors, in a parallel architecture decoder.

l. Introduction

A new, long constraint length Viterbi decoder [1] is
under development for the DSN, and will be used to decode
the constraint length K = 15 experimental code adopted
by the Galileo mission. This article describes the traceback
algorithm that is used in this decoder to store the most
likely paths into each node of the decoder’s trellis.

The traceback (TB) method is one of two known ways
to store decisions made by the add-compare-select unit of a
Viterbi decoder, and then provide decoded bits as output.
The other method is the more traditional register ezchange
(RE) technique. The RE method is suitable for short con-
straint length decoders or for low-speed decoders due to
the large amount of data that needs to be read, modified,
and rewritten at each bit time.

The basic difference between these two methods is

that the RE method stores the actual hypothesized infor-
mation sequences (survivors), while the TB method stores
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the results of comparisons of paths converging into each
node of the trellis. The maximum-likelihood path is then
found by tracing back through the trellis a path, according
to stored decisions. It is worth observing that the bits rep-
resenting the results of these comparisons actually coincide
with the information bits in convolutional codes where the
state transitions are governed by a shift register. There-
fore, the crucial difference between RE and TB methods
lies in the organization of the memory used to store the
survivors. The TB method is widely used in practice, but
not as widely described in the literature. It is mentioned in
[2], and described in [3] without any reference to required
storage or resulting decoding delay.

This article deals with the details of one version of the
traceback algorithm that is based on three pointers explor-
ing three memory buffers. Details on the hardware imple-
mentation of this version of the algorithm may be found in
[4]. If L branches are required as the minimum decoding
depth (L =~ 5K is a usually accepted rule, but L =~ 10K is
more realistic for low E} /Ny applications), enough storage



must be provided for 3L branches in order to perform the
necessary buffering for this TB method. This penalty is
not important in practice since inexpensive and slow off-
chip memory can be used, while the RE method requires
fast on-chip registers.

Il. Memory Management for Traceback

The memory required for the traceback method is or-
ganized in three banks as shown in Fig. 1. Each bank is L
bits long and 2% ~1 bits high (the number of states), which
gives a required storage of about 1 Mbyte, for K = 15 and
L = 170 (not including additional storage for 2X-1 accu-
mulated metrics). Any bit in this traceback memory can
be accessed by an address consisting of the state j (0 <
j < 2K-1) and the bit memory pointer m (0 < m < 3L).

There are three basic operations going on in the mem-
ory banks every bit time:

(1) Traceback, which is a “read” operation and traces a
path between states on the trellis by computing the
next (backward) state address from the presently read
memory content.

(2) Decoding, which is also a “read” operation and similar
to traceback, except that it is performed on “older”
data and it produces output information bits corre-
sponding to the path being traced.

(3) Writing new data (decisions given by the add-com-
pare-select unit), which moves forward on the trellis.
These bits can be written in the locations just freed
by the decoding operation.

Every L bit times a new traceback front is started in
one memory bank from state 0, and a new decode front
is started in a different memory bank at the state where
the previous traceback ended. New data is written into
the second memory bank as memory locations are freed
by the decode operation. The third memory bank re-
mains inactive. After a period of L bit times, the trace-
back/decode/write operations are switched to a different
pair of memory banks, as described in detail below.

Among the three operations, the writing of new data
is by far the most time consuming, since 2%~! bits must
be written for each information bit time. Read operations
only access one bit per information bit time.

Given the amount of required memory, it is cheaper
to use commercial RAM chips, rather than to design this
memory into custom VLSI circuits.

lll. The Traceback Algorithm in Detail

The evolution of memory operations needed for the
traceback method is illustrated in Fig. 2, where the vertical
axis represents the elapsed time and each box represents
the status of memory at a given time. The variables’ names
are the same later used in the pseudocode description of
the algorithm in Fig. 4.

At time = 0, a new traceback is started from state
0 (statetb = 0) at bit memory pointer m = L — 1 in
the rightmost memory bank (bank = 0). The top row of
Fig. 2 shows the memory bank number where traceback
(tb) and decoding (dec) operate. This traceback will end
in a certain state_tb at bit memory pointer m = 0.

Simultaneously, a decoding operation starts from state
state.dec (this is initially an arbitrary value) at bit memory
pointer m = L—1 and proceeds until m = 0, in the leftmost
memory bank (bank 1). For each decoded bit, a full column
of bits can be overwritten with new data. Notice that
all three operations (traceback, decode, and write) evolve
from right to left.

At the end of the first block of L bits, a new traceback
starts from state 0 (statetd = 0) at bit memory pointer
m = 0, moving from left to right in memory bank 1. At
the same time, a decoding operation goes on in the middle
bank (bank 2), starting at the state where the previous
traceback ended (state_dec = statetb) and at bit memory
pointer m = 0. Also, new data is written in the bank doing
decoding. All of these operations evolve from left to right.

After the end of the second block, a traceback and a
decoding start at m = L — 1, both moving from right to
left, in banks 2 and 0, respectively. New data is written in
bank 0. After the third block, i.e., during the fourth block,
traceback and decoding take place in banks 0 and 1 again,
but all operations occur left-to-right, which is opposite to
the direction for the first block. Notice that the read/write
operations alternate between right-to-left and left-to-right
sweeps, which implies that Fig. 2 has a repetition cycle of

3 x 2 = 6 blocks.

Only after three full blocks is decoding performed on
data that has actually been written, rather than on initial-
ized memory. Therefore the decoding delay is at least 3L
bits. Since the decoded output is generated in reversed or-
der (last bit first in each block), one must provide a buffer
to reverse the output, bringing the decoding delay to 4L
bits. Finally, the delay due to the encoder memory must
be added, which yields a total decoding delay of 4L + K
bits.
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The flow diagram of memory operations is shown in
Fig. 3, where the traceback and decoding operations are
shown as sequential in time, even though they may happen
simultaneously in a specialized hardware.

Figure 4 shows the pseudocode description of the TB
algorithm for a convolutionally coded system using a
(7,1/2) code and L = 100. The C-language version of this
algorithm has been used to demonstrate this concept by
software simulation and to verify the correctness of the al-
gorithm. The memory is denoted by the three-dimensional
array RAM|state][m][bank], M[state][.] stores the accumu-
lated metrics, and d[.] represents the branch metrics.

IV. Advantages of Traceback for Parallel
Processing

In a multiprocessor implementation, the Viterbi algo-
rithm based on register exchange requires that the full sur-
vivor sequences be exchanged among processors, together
with the accumulated metrics. It has been found [5] that
the traceback method drastically reduces the communi-

cation bandwidth required between processors by elimi-
nating the need for survivor exchanges. This reduction is
achieved at the price of higher decoding delay.

Figure 5 shows a general parallel architecture, where
the interconnection network is described in [6]. Since,
among the three operations described in Section II, the
write operation is the most demanding, it is performed con-
currently in each processor and its local memory. Each pro-
cessor operates sequentially on a certain number of states,
and then exchanges the accumulated metrics through the
interconnection network. The traceback/decoding opera-
tion may use a bus line to transfer information, consisting
of traceback memory addresses sent to all memories and
single bits coming from a particular memory, correspond-
ing to the memory location referenced by a given address.
The new address is computed from the old one and the
data bit read from a memory. The address computation
does not require parallelism, since it uses only one bit read
per information bit. At the end of each block the last ad-
dress found by the traceback unit is used to initialize the
decoding unit. Further details on the hardware implemen-
tation may be found in [4].
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ORIGINAL PAGE !3
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K=7 "constraint length"
NS=2* (K-1) "number of states"
NS$2=NS/2

L=100 "truncation length"
state_tb=0

time=0

WHILE time < max
{

m=time MOD L
bit par=time MOD 2

IF (m==0) "start a new traceback front"
{

blk_no=time/L

blk_par=blk no MCD 2

tb=blk_no MOD 3 "bank doing traceback = 0,1,2"
dec=(tb+1) MOD 3 "bank doing decoding"®
state_dec=state_tb "set starting state for decoding"”
state_tb=0 "set starting state for new traceback”
FOR m FROM 0 TO L~-1 {outr[m]=ocut{m]} "buffer for order reversal"

}

IF (blk_par==0) {ml=L-m-1} "right to left"

ELSE {ml=m} "left to right"

state_dec=(SHIFT RIGHT state_dec OF 1 BIT) OR (NS2*RAM[state_dec] [t] [dec])
"decoding: address in bank=dec"

state_tb= (SHIFT RIGHT state_tb OF 1 BIT ) OR (NS2*RAM[state_tb ][t][tb ])
"traceback: address in bank=tb"

out [mj= (SHIFT RIGHT state_dec OF K-2 BITS) AND 1 "output buffer"
FOR j FROM 0 TO NS-1 "add, compare, select"
{
i=SHIFT RIGHT j OF 1 BIT
LO = M[i] [bit_par XOR 1] + 4d[K[]j]]
L1l = M[i OR NS2][bit_par XOR 1] + d[3-K[3]]
IF({L1 < LO) { "write one bit"

M(j] {bit_par]=L1
RAM{j] [ml] (decl=1

ELSE

-

[j] [bit_parl=L0
RAM[J] [ml] [dec]=0
}

}
PRINT outr{L-1-m] "print decoded bits in correct order"

time = time+l

}

Fig. 4. Pseudocode for traceback algorithm.
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Convolutional codes have played and will play a key role in the downlink teleme-
try systems on many NASA deep-space probes, including Voyager, Magellan, and
Galileo. One of the chief difficulties associated with the use of convolutional codes,
however, Is the notorious difficulty of analyzing them. Given a convolutional code
as specified, say, by its generator polynomials, it is no easy matter to say how well
that code will perform on a given noisy channel. The usual first step in such an
analysis is to compute the code’s free distance; this can be done with an algorithm
whose complexity is exponential in the code’s constraint length. The second step
is often to calculate the transfer function in one, two, or three variables, or at least
a few terms in its power series expansion. This step is quite hard, and for many
codes of relatively short constraint length, it can be intractable. However, we have
discovered a large class of convolutional codes for which the free distance can be
computed by inspection, and for which there is a closed-form expression for the
three-variable transfer function. Although for large constraint lengths, these codes
have relatively low rates, they are nevertheless interesting and potentially useful.
Furthermore, the ideas developed here to analyze these specialized codes may well
extend to a much larger class.

I. Introduction

In this article a class of binary (n, 1), constraint length
K, convolutional codes, called zero-run length (ZRL) con-
volutional codes, is defined and studied. These codes are
interesting because they are easy to analyze. ZRL codes

include as special cases orthogonal convolutional codes, the
recent “superorthogonal codes” of Viterbi, and many oth-
ers. None of the convolutional codes currently used in
NASA missions belong to the ZRL class. For any ZRL
code, it is possible to compute the free distance by inspec-
tion, and to write down the complete transfer function
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T(D,1,L), explicitly (see Theorem 7, below). Important
variations of the transfer function, viz.

Toum(D) = T(D,1,1)

or
Tbit(D) = —a-T(D, 1, 1)

ar
71len(D) = 51_1(1)) 17 1)

are commonly used to overbound the probability of de-
coder error for these codes ([3], Section 9.3, or [4], Sec-
tion 4.4). For arbitrary convolutional codes, these func-
tions can be very complicated indeed (see [7]), but for any
ZRL code these functions have simple, closed-form expres-
sions (see Corollary 8).

Il. Zero-Run Length Convolutional
Codes

Any (n,1), constraint length K convolutional code is
characterized by a list of n generator polynomials (g:(z),
ve s gn(2)), where gi(2) = gio+gi 1z + - +gi k12X "1is
a polynomial of degree K — 1 or less. The encoder for such
a code consists of a shift register of length K — 1, with one
input and n outputs; the state of the encoder is defined
to be the contents of the shift register. If (s1,...,5x-1)
is the current state, and so is the current input, the next
state is (sg,...,Sk—2) and the output, which we will call
a code segment, is the n-tuple (y1,...,y,), where y; =

K_l . . .
ZJ‘:o $59i.j-

1. Definition. An encoder state 5 = (5182 -+ SK—1)
is said to have zero-run length i, written “ZRL(s) = ¢"
for short, if s contains exactly i leading zeros. For exam-
ple, with K = 5, ZRL(0010) = 2, ZRL(0000) = 4, and
ZRL(1001) = 0. In general, for an (n, 1), constraint length
K, convolutional code, there will be 2K-1 gtates, but only
K possible values for ZRL (0, 1, ..., K —1).

Note that if the encoder is in a state of zero-run length
i, and the input is 0, the next state will have ZRL =
min(i + 1, K — 1), whereas if the input is 1, the next state
will have ZRL = 0. Thus the ZRL of the encoder’s next
state depends only on the current value of ZRL and the
input. This fact is illustrated in Fig. 1, which shows the
topology of states, organized according to the values of
ZRL. In Fig. 1, the arrows marked with a’s represent state
transitions caused by 0 inputs, and the arrows marked with
B’s represent state transitions caused by 1 inputs. We will
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return to this state diagram in the proof of our main result,
Theorem 7, below.

2. Definition. An (n,1) convolutional code of con-
straint length K is said to be a ZRL code if the output
weight depends only on the input and the ZRL of the state.
The symbol u; is used to denote the output weight if the
encoder has ZRL = 7 and the input is 0, and the symbol
w; is used if ZRL = ¢ and the input is 1. The u;’s and the
w;’s are conveniently displayed in a 2 x K matrix, called
the weight mairiz of the code:

0 1 K-1
0 u wu UK -1
W =
1\ w w WK-_1
3. Example. Let K = 3. Then the (4,1) con-

volutional code with generator polynomial list (1,z,1 +
2,14+ z+ z?)is a ZRL code. Since with K = 3 there
is only one state with ZRL = 1, viz. 01, and only one
state with ZRL = 2, viz. 00, in order to verify that this
code is ZRL, one need only investigate the two states with
ZRL = 0, i.e,, 10 and 11. If the state is 10 and the input
is 0, the output is (0101), whereas if the input is 1 the
output is (1110). On the other hand, if the state is 11 and
the input is 0, the output is (0110), and if the input is 1,
the output is (1101). Thus, if the state has ZRL = 0, and
the input is 0, the output weight is 2; and if the input is 1,
the output weight is 3. Hence, the output weight indeed
depends only on the state’s ZRL, as required. The weight
table for this code is as follows:

01 2

02 2 0
W =
113 1 3

4. Definition. The profile of an (n,1), constraint
length K ZRL convolutional code is the vector (d;,ds, ...,
dk), where d; is the Hamming weight of the output of the
encoder, beginning in a state with ZRL = 0, with length i
input sequence 0°~11.

5. Lemma. In terms of the entries in the weight
table, the profile of a ZRL convolutional code is

di=uvotur+ - +ui—2+wi
fori=1,2,...,K

Proof: If one starts in a state with ZRL = 0, and
uses the input sequence 0°~!, one passes through states



with ZRL = 1,2,...,i — 2, causing outputs of weight
ug, Uy,...,Ui_z, and arrives at a state with ZRL =i — 1.
The last input of 1 causes the encoder to move to a state
with ZRL = 0 and to produce an output of weight w;_;.

6. Example. Combining the weight table in Exam-
ple 3 with Lemma 5, one finds that the profile of the code
in Example 3 is (3,3,7): di = wo = 3; d2 = uo+ wr =
2+1=3; anddg=u+uy +wy=2+2+3=T.

Ill. Transfer Function for ZRL Codes

The following theorem is our main result. It gives the
promised closed-form expression for the transfer function
of a ZRL code in terms of its profile.

7. Theorem. For a ZRL convolutional code with

profile (dy,...,dk), the three-variable transfer function is
given by
DixILX
T(D,I,L) = T

1-— E DHILE

i=1

Proof: One begins by reviewing the definition of T(D,
I, L) for an arbitrary (n,1), constraint length K, convolu-
tional code. (See [3] or [4] for more details.)

Starting with the state diagram for the given code,
which is the 2K-! vertex deBruijn graph, each of the 2K
edges is labelled with a monomial in the three indetermi-
nates D, I, and L, i.e., a term of the form D¥I*L. The
power w of D in the monomial represents the Hamming
weight of the encoder output corresponding to the given
state transition, and € is either 0 or 1, according to whether
the corresponding encoder input is zero or one. The re-
sulting labelled, directed graph is called the “DIL state
diagram” for the code.

In Fig. 2 is the DIL state diagram for a K = 3 ZRL
code. For example, in Fig. 2 the edge from state 10 to 11
is labelled D¥eIL. This is because the transition 10 — 11
is caused by an encoder input of 1, so that the exponent
of I in the edge label is 1. State 10 has ZRL = 0, and by
definition of a ZRL code, when the state has ZRL = 0 and
the input is 1, the output weight is wg; thus the exponent
on D in the label is wy. The other seven edge labels can
be explained similarly.

A path of length m in the DIL state diagram is defined
as a sequence of m + 1 vertices such that each adjacent

pair of vertices in the sequence is connected by a directed
edge. For example, in Fig. 2, the vertex sequence 00 —
10 — 01 — 00 is a path of length 3. A path is completely
specified by its initial vertex and the string of input bits
corresponding to the vertex transitions, which we call the
input string of the path. For example, the path 00 — 10 —
01 — 00 has initial vertex 00 and input string 100. The
weight of a path is defined to be the product of the labels
on its edges. For example, the path 00 — 10 — 01 — 00
in Fig. 2 has weight D¥atvet®i L3,

The three-variable transfer function T(D, I, L) is now
defined to be the sum of the weights of all paths from vertez
0K-1 back to vertex 0K —1 which have no intermediate re-
turns to vertez 0K 1, Alternatively, T(D,I, L) is the sum
of the weights of all paths with initial vertex 0K -1 whose
input string ends with 0KX-1 but has no other substring
equal to 0K—1. (In [3, Section 9.3] these paths are called
“fundamental paths.”)

In principle, one can compute T(D, I, L) for any con-
volutional code using the standard “transfer matrix
method” described, for example, in [5, Sec. 4.7). How-
ever, this method is essentially equivalent to inverting a
9K -1y 9K—-1 matrix with three-variable monomial entries,
and is not in general practical except for codes with ex-
tremely small constraint lengths [7]. However, for a ZRL
code, one can simplify this calculation considerably, by
first “collapsing” the state diagram by combining states
with the same value of ZRL. In the collapsed state di-
agram, there will be K vertices, labelled 0,1,...,K — 1;
vertex i will be connected by a directed edge to vertex j if
there is any edge in the original (noncollapsed) DIL state
diagram connecting a vertex with ZRL = i to one with
ZRL = j. The label on an edge in the reduced state di-
agram will be the same as the label on the corresponding
edge in the original graph; the ZRL property implies that
this rule is well defined.

The collapsing process is illustrated in Fig. 3, which
shows the collapsed version of the graph in Fig. 2. Note, for
example, that in Fig. 3 the edge from vertex 0 to vertex 1
is labelled D¥°L. This is because in Fig. 2, both edges
from a vertex with ZRL = 0 to a vertex with ZRL = 1,
viz. 10 — 01 and 11 — 01, have the same label D*°L.

When the DIL state diagram for a constraint length
K ZRL code is collapsed, the resulting state diagram will
be identical to the state diagram in Fig. 1, where the labels
o; and f; are given by

o; = D¥L
B; = D¥IL
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One can think of the collapsed state diagram of Fig. 1
as the state diagram of a finite-state machine, with input
alphabet {0,1} and output alphabet the set of monomials
D¥I¢L. If this machine is in state 7 and its input is 0, its
next state is min(i + 1, K + 1), and its output is D¥{L;
if it is in state ¢ and its input is 1, its next state is 0
and its output is D¥*IL. Note that, as for the original
state diagram, any path in the collapsed state diagram
is specified by its initial vertex and its input string. For
example, the path 2 — 0 — 1 — 2 in the collapsed state
diagram of Fig. 3 has initial vertex 2 and input string 100.
Its weight is Dwatuetui[3]

The important point is that the collapsed state dia-
gram is equivalent to the original state diagram for pur-
poses of computing the 7°(D, I, L) transfer function for the
ZRL code. This is because a path in the original DIL
state diagram with an initial vertex with ZRL = i and in-
put string o will have the same weight as a path in the
collapsed state diagram with initial vertex ¢ and the same
input string ¢. For example, the path in the state dia-
gram of Fig. 2 with initial vertex 00 and input string 100
has weight D¥2+ue+u1 [3] which is the same as the weight
of the path in the collapsed state diagram of Fig. 3 with
initial state 2 and input string 100.

It follows then that the T'(D,I,L) transfer function
for a ZRL code is the sum of the weights of all paths in
the collapsed state diagram of Fig. 1 from state KX — 1
back to state K — 1, with no intermediate returns to state
K — 1. This transfer function is denoted by T} _; ,_;.
One way to compute T _; r_, is to remove the vertices
1,2,...,K — 2 from the state diagram, but to preserve
the path label information by relabelling the remaining
edges appropriately, as shown in Fig. 4. For example, in
Fig. 4, the edge from vertex 0 to vertex K — 1 is labelled
oty - - g —o; this is because in Fig. 1 there is exactly
one path from vertex 0 to vertex K — 1 that uses only the
deleted vertices {1,2,...,K — 1}, viz. 012.-. (K — 1), and
its weight is apay - - - g 2. Similarly, the loop at vertex 0
is relabelled to reflect the fact that there are K — 1 paths
from vertex 0 back to vertex 0 which use only the deleted
vertices: 00,010,0120,...,012-.-(K — 2)0, and the sum
of the weights of these K — 1 paths is fp + aof1 + -+ +
aq - - ag 308k 2, which is the label on the loop at vertex 0
in Fig. 4.

Once the state diagram has been reduced to only two
states, the computation of the transfer function Tg _; x_4
is straightforward. Any path from vertex K — 1 back to
vertex K — 1 with no intermediate return to vertex K — 1
in Fig. 4 must be of the form (K —1)0---0(K —1), and so
the desired transfer function is equal to the weight of the
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path (K —1)0(K ~1) divided by 1 minus the weight of the
loop at vertex 0, i.e.,

* p—
Tk 1,k-1=

agoy - g _2fK -1
1—Bp—aefy —xpanfBa— - —ap-ag_3fr-2

If one substitutes the above values for a; and g; into this
expression, and uses the definition of the profile, the ex-
pression for T(D, I, L) in the statement of the theorem is
obtained.

8. Corollary. For a ZRL convolutional code with
profile (dy,...,dk), the free distance is dx and

dx
Tnum (D) = P,;(l)—)
Toie(D) = FI(JDLV
Tien(D) = DPK(—ggf)

where the polynomials P(D) and @Q(D) are defined by

K-1
P(D)=1- ) D%
i=1

K-1

QD)=K - Y (K —i)D*

i=1

Proof: This follows directly from Theorem 7 and the
definitions of Thym(D), Tvit(D), and Tien(D) given at the
beginning of the article.

9. Example. Continuing Examples 3 and 6, the

profile is (3,3,7), and so P(D) = 1-2D3, Q(D) = 3-3D3.
Thus, by Corollary 8, diree = 7, and

D7
Toom(D) = 1359

= D7 4+2D'% 4 4D

+8D' + 16D + 32D + - .-



D'T
(1-2D3)2
= D7 + 4D 4+ 12D13

Thie(D) =

+ 32D + 80D 4+ 192D 4 .-

D7(3 - 3D%)
(1—2Dd)2

=3D7 +9D0 4 24D'3 4 60D

Tlen(D) =

+ 144D 4 336D?2 + ...

IV. Superorthogonal and Ultraorthogonal
Codes

Next, two important general classes of ZRL convo-
lutional codes, the superorthogonal codes introduced by
Viterbi [1] and the ultraorthogonal codes introduced here,
are defined.

10. Definition. The superorthogonal code of con-
straint length K, denoted by Sk, is defined as follows:
S, = (1), and for K > 2, then Sk is a (2K-2,1) code
whose generator polynomials are all 2K -2 possible poly-
nomials of the form 1 + g1z + -+ + gg_9z¥ =2 4 zK-1,

11. Definition. The ultraorthogonal code of con-
straint length K, denoted by Uk, is defined as follows:
Uy = (0), and for K > 2, then Uk is a (25-2,1) code
whose generator polynomials are all 25-2 possible poly-
nomials of the form g1z + « -+ + g _22X 2 4+ K1,

12. Example. For K = 3 the code S3 has generator
polynomial list (1 + 22,1+ z + z2), and Us has generator
polynomial list (z2,z + z?%).

13. Theorem. For all K > 1, the codes Sk and Uk
are ZRL codes. The weight tables for the superorthogonal
codes are as follows:

0
0/0
W(51)=1(1)
01
0/1 0
W(52)=1(0 1)
01 2
0/1 2 0
W(S"):l(l 0 2)

and, for K > 3

0 1 - K-3 K-2 K-1
0 2K-3 o9oK-3 | 9K-3 oK-2 0
W(Sk) =
1 \2K-3 9oK-3 |  9oK-3 0 9K-2

Similarly, the weight tables for the ultraorthogonal codes
are as follows:

0
0/0
Ww(l,) =
(Uh) ar
01
0/1 0
W(U;) =
(U2) oo
0 1 2
0/1 2 0©
%% =
U=111 2 0
and, for K >3
0 1 - K-3 K-2 K-1
0 9K-3 2K—3 ... 9K-3 9K -2 0
W(Uk) =
1 9K-3 2K—3 2K—3 2K—2 0

Proof: The key to the proof is the close relation-
ship between the convolutional codes S and Uk and the
first-order Reed-Muller (1RM) block codes, which are now
described. The (2™, m+1) 1RM code can be defined by an
(m+1)x 2™ generator matrix G,, which has as columns all
possible binary (m+1)-tuples ending with 1. For example,
with m = 2 the (4,3) 1RM code has generator matrix

1
Gy = 1
1

_—_ O

00
01
11

It is known that all weights in the (2™, m + 1) IRM
code are equal to 21, except for the all-zero word and
the all-one word ([8], Chapter 13). If G?, is defined to be
the matrix obtained by adding a row of zeros at the top
of G, and G}, to be the matrix obtained by adding a
row of ones at the top of Gy,, then the columns of G%_,
give the coefficients of the generator polynomials of Uk
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and the columns of G} _, give the generator polynomials
of Sk . For example, again with m = 2,

0 000 1 111

0 0011 L 0 01 1
G2= 02:

0 1 01 01 01

1 111 1 11 1

It therefore follows that every (25X~2)-bit code segment in
either of the codes Sk or Uk is a word in the (2K-2, K—1)
1RM code. In almost every case, this segment will have
weight 2K-3; the only other possibilities are weight 0 (the

all-zero codeword) and weight 25 ~2 (the all-one codeword).

To analyze these exceptional cases, note that every lin-
ear combination of rows of either G2, or G, is a word in
the 1RM code. All such linear combinations will therefore
have weight 2™~!, with the following exceptions. In G2,
the empty linear combination, or the top row, give the all-
zero codeword; and the bottom row, or the top row plus
the bottom row, give all ones. In Gl , the empty linear
combination or the top row plus the bottom row gives the
all-zero codeword; and the top row or the bottom row gives
all ones.

Therefore, in the ultraorthogonal code Uk, the code
segment will be all zeros if and only if the state is 0K~}
and the input is 0, or the state is 0K~! and the input is
1. Similarly, the code segment will be all ones if and only
if the state is 0€~21 and the input is zero, or the state is
0K-21 and the input is 1. Thus, the output weight will be
2K -2 ynless the state has ZRL = K — 1 and the input is 0
or 1, in which case the output weight is 0, or if the state
has ZRL = K — 2 and the input is 0 or 1, in which case the
output weight is 2X—1. This is what the theorem states
about the ultraorthogonal codes.

Similarly, in the superorthogonal code Sk, the code
segment will be all zeros if and only if the state is 01
and the input is 0, or the state is 0K =21 and the input is 1.
Similarly, the code segment will be all ones if and only if
the state is 05X —! and the input is 1, or the state is 0% 21
and the input is 0. Thus, the output weight will be 2K-2
unless the state has ZRL = K — 1 and the input is 0, or
if the state has ZRL = K — 2 and the input is 1, in which
case the output weight is 0; or if the state has ZRL = K -1
and the input is 1, or if the state has ZRL = K ~ 2, and
the input is 0, in which case the output weight is 2X-1.
This is what the theorem states about the superorthogonal
codes.
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Theorem 13 provides many ZRL codes. The following
definition and the discussion that follows will show how
to use the superorthogonal and ultraorthogonal codes to
build many other ZRL codes.

14. Definition. Given two convolutional codes, their
sum is defined to be the convolutional code whose genera-
tor polynomial (g.p.) list is obtained by merging the g.p.
lists for the original codes. Thus for example, the sum of
the (3,1) code with g.p. list (1,1 + z,1+ z + z?) and the
(2,1) code with g.p. list (1+22,1+z+z?) is the (5,1) code
with g.p. list (1,1+2,1+ 2% 1+z+2%,1+2+2?%). In gen-
eral, the sum of an (n, 1} convolutional code of constraint
length Ky and an (ng, 1) convolutional code of constraint
length K is an (n+n3,1) convolutional code of constraint
length max(K;, K3).

15. Lemma. If C; and C, are ZRL convolutional
codes, with constraint lengths K; and K3, respectively,
with K; < K, then C; + C; is also ZRL, and the weight
table for C; + C: is obtained from the weight tables W
and W; by first extending Wi by repeating its last column
Ky — K; times, and then adding the two weight tables
together.

Proof: If the two codes have the same constraint
length, this is immediate. If, however, the two constraint
lengths are different, and K; < K3, C; can nevertheless
be regarded as a convolutional code with constraint length
K7 in which the last {3 — K bits in the shift register are
never used. States with ZRL values Ky, Ky +1,...,K3—1,
will plainly behave just like the all-zeros state (with ZRL =
Ky — 1), and the extra K3 — K columns that appear in
the weight matrix will be identical to the last column of
the unextended weight matrix. The result now follows.

16. Example. The code of Example 3 is S; 4+ U2+ S3,

“as may easily be verified. The corresponding weight tables

are, by Theorem 13,

=)
ww)=(; o)

W)= (1 § 3)

To obtain the weight matrix for S; + Uz + S, first extend
W(S,) and W(U;) to dimensions 2 x 3 by repeating the



respective last rows, and then adding the resulting matri-

Ces:
{0 0 0 10 0 1 20
W‘<111)+(100)+(102>
(220
={3 1 3

which is the same as was seen in Example 3.

17. Example. For any K, the code SRS+ )
is by Lemma 15 a ZRL code. In fact, this code has as
generator polynomials all 2K polynomials of degree < K —
1; it is the orthogonal code of constraint length K.

18. Theorem. The proﬁles of the codes Sk are:

profile(Sy) = (1)

profile(Sz) = (0,2)
profile(S3) = (1,1,5)
profile(Sy) = (2,4,4,12)
profile(Ss) = (4,8,12,12,28)

profile(Sk) = (2K3,2.2K-3 .,
(K —2)2% -3 (K - 2)2K-3,
(K +2)2573)

The profiles of the codes Uk are

profile(Uy) = (0)

profile(Uz) = (1,1)
profile(Us) = (1,3,3)
profile(Us) = (2,4,8,8)
profile(Us) = (4,8,12,20,20)

profile(Ux) = (25¥-3,2.2K-3,. |
(K —2)2K-3 K2K-3 KoK-3)

Proof: This follows by combining Theorem 13 and
Lemma 5.

19. Example. By combining Theorems 7 and 18, one
can obtain the transfer function for the superorthogonal
codes. Indeed, if z = D2K_3, it follows from these theorems
that for the superorthogonal code of constraint length K,

T(D,1,L)

K2 LK
T T—2IL(1 + zL + -~ + 2K 3LK-3) — ;K] LK-1

_ K2 LK (1= 2L)
= TT2(L+1L) = 2K 2ILR-1 4 K-1(ILK-1 + ILK)

an expression first found by Viterbi [1]. It follows then
from Corollary 8 that diree = (K + 2)2%-3 and

2K+2(1-2)
2z — 2K-2 4 2,K-1

Tnum(D) = 1_

R -2)
T (1-2z)(1 - 2K-2)

K42 2K—3
= {(2“ —T)(1 - 22)

(2K—3 _ 1)_ z —222 - ____2K—4ZK-3
(2K—2 - 1)(1 _ zK—2)

In the last expression, a two-term partial-fraction decom-
position is seen (in braces) for the generating function
Thum(D)/2%+2. The coefficient of 2F in the expansion of
the first term is

2K—3
w1 Y
The coefficients of the expansion of the second term are
periodic of period K — 2, and each term is less than 1/2
in absolute value. Since it is known that the coefficient of
z* in the combined expansion is an integer, it follows that
this coefficient must be the integer closest to

2K—3 x
SRT_71 °
Therefore, it has been proved that the coefficient
of Ddunectk2%"> jn Ty (D) for the superorthogonal code
of constraint length K is

K-3

Ny,...+k2K-3 = integer closest to SK=T_71 oF
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As a special case, it is found that the (8,1), K = 5 su-
perorthogonal code has dfee = 28, and the number of fun-
damental paths of weight 28 + 4k is the integer closest to
1 9k .

7 2 y Loy

Tnum(D) — DQS + D32 + 2D32 + 5D36
+9D* + 18D 4 37D + O(D%?)

V. A Representation Theorem

If Theorem 13 is combined with Lemma 15, many ZRL
codes can be constructed. It is surprising (and perhaps
disappointing) that all such codes are constructed this way.

20. Theorem. An (n,1) convolutional code C of
constraint length K is ZRL if and only if it is the sum of
copies of superorthogonal and ultraorthogonal codes:

K
C= E(mi& + n;U5)

i=1

where m; and n; are integers denoting the multiplicities of
S; and U; in the code C.

Proof: The proof of this theorem is lengthy and will
be omitted.

The next lemma, when combined with Theorems 20
and 18, enables one to write down the transfer functions
for any ZRL convolutional code.

21. Lemma. If ) and C3 are ZRL convolutional
codes, with constraint lengths K; and K, respectively,
with K3 < K3, then the profile for the sum C; + C» is
obtained from the profiles for Cy and C; by first extending
profile(C)) to length K, by repeating its last entry K,— K,
times, and then adding the two profiles together.

Froof: This follows by combining Lemma 15 with
Lemma 5.

22. Example. The ZRL code in Example 3 is C =
51+ U2+S3, as was seen in Example 16. The corresponding
profiles are, by Theorem 19,

profile(S;) = (1)
profile(Us) = (1,1)
- profile(S3) = (1,1,5)
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To obtain C’s profile, use Lemma 21. First extend the
profiles of S; and U, to length 3 by repeating the last
entries, and then add the resulting lists:

profile(C) = (1,1,1) + (1,1,1) + (1,1,5) = (3,3,7)

as was seen in Example 6. However, for the same values
of n and K, one can get a larger dg. by considering the
code 253 instead, since its profile is 2(1,1,5) = (2,2, 10),
so that dyee = 10. And in fact, for n = 4 and K = 3
this is the largest possible free distance, since the Plotkin
bound for these parameters gives dyee < 10. In general,
for (n,1), K = 3 ZRL codes, the largest possible dfee
is |32], achieved by [%]Ss + (n mod 2)S,, whereas the
best possible dg.. among all codes, ZRL or not, is [%’lj,
achieved by [2#1](1 + z?) + [22L](1 + 2 + 2?). The
ratio of these two values approaches 16/15 as n — oo,
and the smallest value of n for which these two values
differ by as much as two is n = 9, where the best ZRL
code 453 + Sy has diree = 22, but the code with g.p. list
(3(1 + 22),6(1 + z + z?)) has dfree = 24. However, even in
this case the ZRL code may be competitive, since its Thym
is

D22
1_D4_D5 =D22+D26+D23+D30+0(D32)

whereas the unrestricted code has

D*(2 - D)

Toum = T35 3 D12

= 2D* + 5D 4 O(D%)

And indeed, an asymptotic analysis shows the rate
of growth of the coefficients of T,ym(D) for the ZRL code
to be = (1.1577)", whereas for the unrestricted code it
is & (1.1740)". Thus, as discussed in [2], the ZRL code
may perform better at low signal-to-noise ratios than the
non-ZRL code.

VI. Summary

A class of convolutional codes, termed zero-run length
(ZRL) convolutional codes, has been discovered for which
the free distance can be computed by inspection, and for
which there is a closed-form expression for the three-vari-
able transfer function. This class of codes includes the su-
perorthogonal codes introduced by Viterbi [1] and analo-
gous “ultraorthogonal” codes introduced here. It has been
found that, while ZRL codes are much more general than
superorthogonal or ultraorthogonal codes, any ZRL code
may be constructed as a combination (“sum”) of super-
orthogonal and ultraorthogonal codes.



Although ZRL codes have very low rates for large con-  here to analyze this class of specialized codes, such as the
straint lengths, they are nevertheless interesting and po-  use of reduced state diagrams, might extend to other in-
tentially useful. Furthermore, many of the ideas developed  teresting code classes as well.
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Fig. 1. Reduced state diagram for analyzing ZRL codes.

Fig. 2. The DIL state diagram for a K = 3
ZRL code.

Fig. 3. The collapsed DIL state diagram for a K = 3 ZRL
code (compare to Fig. 2).

BO* uoﬂ1+ seed Oy see Oy g ﬁK—Z

LT L PERRE.

Fig. 4. The state diagram of Fig. 1, after the loop at siate
K—1 and the states 1, 2, . . ., K—2 have been eliminated.
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Quantization Effects in Viterbi Decoding Rate 1/n
Convolutional Codes

1. M. Onyszchuk, K.-M. Cheung, and O. Collins
Communications Systems Research Section

A Viterbi decoder’s performance loss due to quantizing data from the additive
white Gaussian noise (AWGN) channel is studied. An optimal quantization scheme
and branch metric calculation method are presented. The uniformly quantized
channel capacity Cy(q) is used to determine the smallest number of quantization
bits q that does not cause a significant loss. The quantizer stepsize which maximizes
Cu(q) almost minimizes the decoder bit error rate (BER). However, a slightly larger
stepsize is better, like the value that minimizes the Bhattacharyya bound. The range
and renormalization of state metrics are analyzed, in particular for K =15 decoders
such as the Big Viterbi Decoder (BVD) for the Galileo mission. These results are
required to design reduced hardware complexity Viterbi decoders with a negligible

quantization loss.

I. Introduction

Theoretically, Viterbi decoding is a maximum-
likelihood decoding algorithm for convolutional codes. In
practice, the main performance loss results from quantiz-
ing input data with ¢ bits. The decoder’s hardware com-
plexity and speed depend strongly upon ¢ and the state
metric register length £. Therefore, these parameters must
be chosen as the smallest values that do not cause a signif-
icant bit signal-to-noise ratio (£y/Ng) loss. A constraint
length K = 15 decoder performs double the computation
of a K = 14 decoder, but requires about 0.1 dB less E}; /Ny
for a bit error rate (BER) of 0.005. Since part of the de-
coder’s hardware complexity increases only linearly with ¢,
even a 0.01-dB quantization loss is large. However, given

that one must construct a fully parallel K =15 (or K =7)
decoder, a slightly larger loss might be acceptable or re-
quired by hardware and speed constraints.

The uniformly quantized, additive white Gaussian
noise (AWGN) channel capacity C,(q) is used to estimate
the quantizer stepsize A and smallest ¢ that result in a
negligible loss. For each ¢, almost minimum BER occurs
when A maximizes Cy(g) or minimizes the Bhattacharyya
bound 7. New methods are presented to minimize the
state metric register length £ in bits. These estimates
are verified by simulations of three codes : the constraint
length K =7, rate R = 1/2, NASA standard code; the new
experimental K =15, R = 1/4, Galileo code [1]; and the
K=15 R=1/6, “2-dB” code [2].
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These results are used to determine the best design
parameters ¢, £, and A for K =15, rate 1/4 and rate 1/6
decoders. Using 6 quantization bits with 10-bit state met-
ric registers would substantially reduce the Big Viterbi De-
coder (BVD) [4] hardware complexity and allow the sys-
tem clock frequency to decrease by a factor of 0.56 as com-
pared to the current design, which has ¢ = 8 and £=16.
Using ¢ =5 would cause an Ej/Ng loss of 0.02 dB at a BER
of 0.005 for the Galileo code or “2-dB” code, but there is
no measurable Ey /Ny loss when ¢ = 6. Since the same
losses occurred for 8-bit symbol error rates (SER), these
results apply when an outer block code is concatenated
with the convolutional code.

1I. Branch Metrics

When an encoded 0 or 1 is mapped to +1 or —1,
respectively, and then transmitted, the receiver’s demod-
ulator output is a conditionally Gaussian random vari-
able y with mean +m or —m and the same variance
0? = m?/(2REy/N,) as the zero-mean AWGN channel
noise. (This holds for binary phase shift-keyed [BPSK]
signaling with ideal coherent detection.)

For the AWGN channel, a Viterbi decoder finds the
trellis path with minimum Euclidean distance (or equiv-
alently, minimum negative inner product) to the received
sequence. Thus, each trellis branch metric is the inner
product of the length n branch label (with 0 and 1 re-
placed with +1 and —1) and the negative of a received
vector [y;,¥2,...,ys]. Hence, the decoder adds —y; or
+y; (equivalently (—y; + |vi[)/2 or (yi + lyi|)/2 when o is
fixed, because incrementing or multiplying all branch met-
rics by a constant does not change the decoder’s output)
to the metrics of those branches with a +1 or —1 in posi-
tion i. Therefore, the decoder may add |y;| to the metrics
of branches having different signs in position 7 than that
of yi, and zero otherwise. This sign-magnitude method is
used throughout this article because it halves the branch
and state metric maximum ranges, as compared to using
standard integer metrics [3,4]. For example, using this
method in the Scarce-State K = 7, rate 1/2 decoder [5]
would substantially decrease the chip circuitry.

1. Quantization

When zeros and ones are equally likely in the encoder
input data,

Pe(y =z | +1)+ Pr(y = —= | +1)]

1
Pe(lyl = =) = 3
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In this article, m = 0.84 volts. The probability distribu-
tion function of Jy| (Fig. 1) suggests that more quantiza-
tion levels are required for the K = 15 codes operating
near 0 dB (high noise variance) than the NASA code at
Ey /Ny = 2.25 dB.

Let the random variable J be the quantized value of
y and for =291 — 2 < j < 2971 — 2 define

pj=Pr(J=j|+1)

(+0.5)A
e—(y—m)2/2azdy

- Veiro
(i-0.5)a

For j = £(297! — 1), p; is the above integral with
limits (j — 0.5)A and +o0, or —co and (j + 0.5)A.

Since |J1|,-..,|Jn| are summed to form branch met-
rics, the absolute error |J; — y;| in quantizing y; is also the
contribution to the branch metric error incurred. A de-
coder using signed integers to represent J; could conceptu-
ally use 0, £A, £2A,...,£(277! — 1)A for any real num-
ber A, because multiplying all metrics by A has no effect.
Therefore, the quantizer thresholds should be uniformly
spaced A volts apart at +A/2, +£3A/2,...,+(29"1HA/2,
because this minimizes the metric error defined above (and
also any positive function of J; — y;). Thus, only uniform
quantization schemes, characterized by ¢ and A, are con-
sidered herein. (Several simulations of the NASA code
using 3-bit integer branch metrics and nonuniform quan-
tization schemes never produced lower BERs than using
the best A).

For ¢ = 3, J; is normally one of 7 values from -3 to
43, so quantizer levels +4 and —4 are appended (Fig. 2) to
decrease the BER near that for 8 levels and standard inte-
ger metrics. Thus, the maximum magnitude of J, 2971,
will be replaced by 4 instead of 3 for ¢ =3 throughout this
article. In rate 1/2 decoders, a branch metric of 8 is de-
creased to 7 so that ¢ = 3 bits still represent all possible
values. Since Pr(|J;l = j) = p; + p—j, this event occurs
with probability (py4 + p—4)?, which is only 0.11 for the
NASA code at Ep/Ng = 2.25 dB.



IV. Quantizer Stepsize

Ideally, the uniform quantizer stepsize A should min-
imize BER and SER over the decoder’s operating range of
channel noise levels. In practice, a A which almost min-
imizes the BER for the lowest expected E,/Ny will also
nearly minimize both the BER and SER when E; /N, in-
creases by up to 1 dB. Simulations (described later) indi-
cate that the A that maximizes channel capacity is near
optimum.

Since the binary-input quantized AWGN channel is
symmetric, capacity is achieved with equiprobable inputs:

2911

: 2p(5 | +1)
Culq) = p(j | +1) lo [ - :
W= 2 P+ ke | T
29711 )
=1- Z p; logs (l—f-E——_’)
j=-20-141 Pi

bits per channel use. Figure 3 shows how rapidly the max-
imum possible uniformly quantized AWGN channel capac-
ity Cy(q) approaches its limit for several noise variances;
Cu(3) is based upon the 9-level quantizer in Fig. 2 instead
of using 8 or 7 levels. A ¢ =4 or ¢ = 5 quantizer has
15 or 31 levels, respectively. The data points in Fig. 2
indicate Cy(q) for integer values of ¢. The lines between
data points are channel capacities when uniform quantiz-
ers have intermediate numbers of levels, such as 24.

The curves in Fig. 3 show that there is negligible
capacity gain for ¢ > 6, and in fact Cy,(5)/Cy(00) > 0.9975
suggests that there will be a very small loss for ¢ = 5.
Figure 4 shows how the performance of the NASA code
at Ey/No = 2.25 dB varies with ¢ and A. Observe that
the minimum BER for ¢ = 5,4, and 3 increases roughly in
proportion with the decrease in capacity. Also, for ¢ = 5,
there is a negligible loss and the BER increases extremely
slowly for A greater than the optimum. Therefore, for ¢ >
4, it is important to choose A larger instead of smaller than
the best value. The labels C and v in Fig. 4 indicate the
stepsizes that respectively maximize C,(g) and minimize
the Battacharyya bound parameter
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which is a measure of the channel noise level: near 0 for
high E4/Ny and approaching 1 for very noisy channels.

The A that minimizes v is the safest choice because it
is slightly larger than the stepsize which minimizes BER.
Also, minimizing v yields the lowest BER for ¢ = 3 with
9 quantizer levels (Fig. 4). Finally, the corresponding 8-
bit SER curves are not shown because they have the same
relative shape and spacing as the BER curves in Fig. 4.
Many sets of software simulations were run for the NASA
code and the Galileo code. The values of ¢ were 3, 4, 5, or
6 and Ey/Ny ranged from 0 dB to 3.5 dB.

In all simulations, the As which maximize Cy(q) or
minimize 94 were, respectively, slightly smaller or larger
than the A that minimized BER. For ¢ = 3 or 4, the As
which minimize the quantizer mean-square error or abso-
lute error were too large.

The simulations in Fig. 5 for the K = 15 codes show
that using ¢ = 5 or 4 costs 0.02 dB or 0.05 dB at the
BER of 0.005 required for images. These E; /N, quantiza-
tion losses are the same when the Viterbi decoder output
becomes the input to an outer block decoder, because the
8-bit symbol error rate curves are spaced the same distance
apart as the BER curves. In all simulations, the uniform
spacing A was chosen to minimize ¥.

V. State Metric Renormalization

For each received n-vector and encoder state, a
Viterbi decoder finds the trellis path with least total
branch metrics into the state. Since the state metrics are
stored in /-bit registers, occasionally they must all be de-
creased to avoid overflow. This renormalization can be ac-
complished by zeroing every register’s most significant bit
(msb), which is equivalent to subtracting 2¢=! from every
metric if all registers have msb = 1. However, detecting
when all 25X—! metrics simultaneously have msb = 1 is
impractical for a K = 15 decoder such as the BVD.

At each trellis level, let the random variable Af be
the difference between the maximum and minimum state
metrics. If any state metric is > 20! 4 2¢-2 (its two
most significant bits are 1) and M < 2¢-2, then all met-
rics are > 2¢-1 5o every msb = 1. In the BVD, ¢ = 16
was chosen to guarantee that 2-2 > M, and so a sin-
gle state metric is monitored and renormalization occurs
when the two most significant bits are 1. The following
improved method should be used when ¢ is reduced so
that M > 2¢-2, Let W be the maximum of the metrics of
the all-zeros state, the all-ones state, and the state with a
one input followed by K — 2 zeros. Since most state met-
rics differ from one of these three metrics by only a few
|J;| contributions, W is close to the largest state metric
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(Galileo code simulations verified this). Therefore, renor-
malization could occur when W exceeds a threshold such
as 20-14 2¢-2 4 2¢-3  If more metrics are monitored, the
threshold can be set closer to 2¢ — 1 because W will be
closer to the largest state metric.

Definition. Let D be the maximum, over all nonzero
states s, of the least-weight trellis path from the all-zeros
state into state s.

Lemma. M < D(297! - 1)

Proof. Let b and w be the states with lowest and
highest metrics. Since a convolutional code is linear, there
exist two trellis paths from some state ¢, one into state b
and the other into state w, whose branch labels differ in
D or fewer positions. Since the maximum contribution to
a branch metric by one J; is 2971 — 1, the state metric of
w is at most the state metric of b plus D(29°1 —1).

Corollary. In the absence of noise,
M=My=D -jm

where j, = |0.5+ m/A] is the quantizer output when
+m volts is input.

For nonsystematic codes, D is near diee and usually
much less than n(K —1), the maximum possible. The
NASA code has dgee = 10, D = 8, and n{(K -1) = 12.
Since D = 33 for the Galileo code, My = 132 for ¢ = 5,
A = 0.20, and m = 0.84. Since D = 50 for the rate 1/6
“2.dB” code, My = 200. Simulations for the Galileo and
NASA codes show that My is an upper bound on the mean
of M when the channel is noisy and 2M is always greater
than M.

As in the ¢ = 3 case where levels +4 and —4 were
adjoined, a rule for limiting branch metrics may be derived
by computing their probabilities. Define

29711

mz)=po+ D, (pj+p-j)%
j=1

Then Pr(|Ji| = j) = {m(z)};, the coefficient of 2/ in
m(z). Since the largest possible branch metric is the sum
of n independent values |J;, ..., |J/al, it equals ¢ with prob-
ability {[m(z)]"},. Thus M could be reduced by limiting
branch metrics.

D(29"'-1)
Claim. Pr(M > )<

i=t

{Im)"},
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where the subscript i denotes the coefficient of z* in the
polynomial within the braces.

Proof. Let b and w be the states with lowest and
highest metric. An upper bound on Pr(M =1) is obtained
by considering the worst possible case: the survivor path
for state w differs from that for state b in exactly D po-
sitions, and in these positions, the survivor path branch
labels of w have a different sign than the received J;. Then
Pr(M =t) is the coefficient of z* in [m(z)]”.

To achieve a particular (very low) probability, ¢ must
be unrealistically large since the above bound is not very
tight. This is fine, because ¢ could be chosen as the least
power of 2 such that Pr(M > t) < 107°, Then setting
¢ =1 + log,t results in no loss of performance.

The current BVD design has ¢ = 8 and £ = 16 to ac-
commodate M < n(K —1)(29"!—1) and two extra bits for
renormalization. This results in full maximum-likelihood
decoder performance. However, using ¢=6, A = 0.14, and
£=10 for the BVD operating at 0 to 1 dB E,/Ny would
not increase the BER or SER detectably, but would reduce
the decoder hardware. Furthermore, the system clock fre-
quency and thus timing constraints would be reduced by
a factor of 10/18.

When £ < 1+ log,[D(297! = 1)], then occasionally a
state metric may overflow, whereupon it is immediately
decreased by 2¢, instead of 2¢~! at the next renormaliza-
tion. Protecting against overflow is important because a
state with a high metric might suddenly become one of the
best states, causing the decoder to make wrong decisions.
This can be avoided by setting state metrics that overflow
equal to all ones (2 — 1). Then states with very high met-
rics remain this way even after renormalization so they do
not affect the decoder’s output. An underflow is the event
that occurs at renormalization when a state metric has
msb = 0, in which case the metric is effectively increased
by 2¢=1. Rarely, underflows may occur because it is infea-
sible to continuously check all 25~1 state metrics to find
the least value. In conclusion, overflows can be prevented
by extra hardware, but underflows will occasionally hap-
pen. In practice, always examining several state metrics
gives a good approximation of the current metric size and
range M. Hence, renormalization can take place so that
overflows and underflows occur with very low probability.

Myth. When state metrics overflow or underflow,
the decoder fails completely.

One million decoded bit simulations for ¢ = 5 and 4
with short state metric registers having £ = 9 and 8 bits,



respectively, yielded the same results as in Fig. 5, because
the odd underflow or overflow that occurred did not signif-
icantly affect the output. This follows from the Viterbi de-
coder’s robustness and tolerance of occasional state metric
disruptions. Further shortening of the state metric regis-

ters to 8 and 7 bits resulted in a graceful BER increase,
as though ¢ was being decreased. This behavior is ex-
pected because the overall trellis path metric resolution
is the decoder parameter, affected by input quantization,
which influences decisions.
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Fig. 2. Optimal quantization for 3-bit branch metrics.
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Big Viterbi Decoder (BVD) Results for (7,1/2)
Convolutional Code

J. Statman, J. Rabkin, and B. Siev
Communications Systems Research Section

The Big Viterbi Decoder (BVD), capable of decoding convolutional codes with
constraint lengths of up to 15, is under development for the DSN. As part of the
development, a commercial single-chip (7,1/2) Viterbi decoder is used to enable
early start of system integration. Tests of the integrated partial system (including
simulator, input interfaces, output interfaces, and computer controls) were recently
completed at the DSN Compatibility Test Area (CTA-21) at JPL. This article
describes the system elements used for the demonstration and test results.

I. Introduction

The Big Viterbi Decoder (BVD) is under develop-
ment for the Deep Space Network (DSN) [1]. It is in-
tended to provide up to 1.8 dB improvement in link margin
through the use of convolutional codes with larger con-
straint lengths. Specifically, the BVD is designed to op-
erate with any convolutional code with constraint length
of K < 15 and code rates 1/2,1/3,...,1/6. In contrast,
the current equipment is designed for the standard DSN
code, K = 7 and rate 1/2. The BVD prototype will be
used in a May 1991 demonstration in conjunction with the
Galileo mission. Following a successful demonstration, the
decoder will be inserted into the DSN for use with Galileo
and future missions.

A block diagram of the BVD, as initially planned,
is shown in Fig. 1(a). The core of the decoding pro-
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cessing is performed in the Processor Assembly using 256
or 512 identical custom VLSI chips. All the other func-
tions are performed in the Controller Assembly. These
include transforming of input soft symbols, buffering data
to the Processor Assembly, interfacing to output devices,
and providing full self-test capability. Early on it was
recognized that the Processor Assembly, especially the
VLSI chips, is the time-critical element in the devel-
opment schedule since no meaningful DSN-compatibility
tests could be conducted without having a “decode” capa-
bility, which requires a full Processor Assembly. To over-
come this bottleneck, a secondary “decode” path was in-
troduced as shown in Fig. 1(b). The additional path uses
a commercial QUALCOMM Q1401 (7,1/2) decoder chip
and enables testing of many BVD functions well before
the Processor Assembly is ready. A partial BVD, shown
in Fig. 1(c), was completed and tested in the laboratory
and in the DSN Compatibility Test Area (CTA-21) at JPL,



verifying decoder operation for (7,1/2) code and current
DSN interfaces.

Il. Functional Block Description

The system under test consists of a MULTIBUS 1
chassis with six boards: an Intel 80386/21 CPU and five
custom digital boards. Figure 2 shows a more detailed
functional block diagram of the five custom boards. These
boards include functions required in DSN operation, as
well as functions needed during development and testing.
Some of the latter are especially critical during diagnos-
tics and fault isolation, enabling failures to be traced to
a specific board. The following is a description of these
functions, by board.

A. Memory Board

This board includes 1 Mbyte of Electrically Erasable
Programmable Read-Only Memory (EEPROM) and is
used for object code and key parameter storage. It en-
ables the BVD to accept program updates without a ma-
jor interruption: the new code is downloaded from an IBM
PC/AT computer into RAM and stored in the EEPROM.
Upon reset, the program is read from the EEPROM into
RAM and executed. This approach eliminates the opera-
tional problems associated with removing boards and re-
placing EPROMs (which must be erased under an ultravi-
olet light). The board also stores critical mission parame-
ters to allow easy restart after a power glitch. If additional
memory is required, multiple boards can be installed.

B. Encoder Board

The encoder (simulator) board provides a flexible
source for encoded data test sequences for BVD self-test.
In operation, a fairly comprehensive self-test with several
million bits can be run at 1.1 Mbit/sec, requiring only a
few seconds. The board includes an uncoded data source,
encoder, and circuitry that gets calibrated noise samples
from an external noise source. All functions are fully pro-
grammable. Simulated symbols are generated by passing
bits from a programmable sequence generator through an
encoder, and summing them with properly scaled noise.
The encoder is implemented as a computer-loaded RAM,
where each state of the encoder shift-register corresponds
to an address of the RAM. This allows implementing of
any convolutional encoder for K < 15 and 1/n, n < 6
through a single computer loading of the RAM.

Other functions that the board performs are moni-
toring the mean and variance of simulated noise samples
(received from an external source), generation of simulated

bit and symbol clocks, and transfer of simulated bits to the
comparator board.

C. SSA/BBA Interface Board

This board includes circuitry that generates system
clocks, interfaces to the Symbol Synchronizer Assembly/
Baseband Assembly (SSA/BBA) for input symbols, re-
clocks input signals, and interfaces to the Time Code
Translator (TCT) for time tagging. It also provides a sim-
ulated symbol RAM that allows testing of the SSA/BBA
interface.

D. SNR Estimator Board

The circuitry on this board collects data for sym-
bol signal-to-noise ratio (SNR) estimation. The approach
is similar to that used in the Symbol Stream Combiner
(SSC)! and requires computation of sum-of-squares and
sum-of-absolute-values of the received symbols. Comput-
ing symbol SNR internal to the BVD provides an impor-
tant diagnostic tool as well as a monitor of BVD health
during real-time operation.

The board includes a scale RAM and an alternate
symbol sign-flipper to allow for computer-controlled ad-
justment of these symbol attributes. The scale RAM al-
lows one to scale the input symbols by a constant, which
also enables testing for possible inversion in the SSA/BBA
(the Galileo (15,1/4) code is nontransparent). The alter-
nate symbol sign-flipper is required to compensate for the
sign flipping used in encoders on board most JPL space-
craft. Another feature on this board is a coded data test
RAM that allows the CPU to read and store symbols from
either the SSA/BBA (in real time) or the simulated signal
generated by the encoder board.

The board also includes provisions for future interfaces
to the DSN through a First-In, First-Out (FIFO) buffer.
This interface will be utilized when the new Telemetry Pro-
cessor Assembly (TPA), currently under development, is
sufficiently defined.

E. Comparator Board

The comparator board includes a (7,1/2) Viterbi de-
coder, a comparator that allows bit error rate (BER) data

! S. Dolinar, “A Lot of Things You Always Wanted to Know
About Signal-to-Noise Estimation Methods (but Didn’t
Bother to Ask),” JPL Interoffice Memorandum 331-85.2-109
(internal document), Jet Propulsion Laboratory, Pasadena,
California, January 22, 1986.
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collection, symbol rate estimation circuitry, and various
output interfaces.

The (7,1/2) Viterbi decoder section is centered on a
QUALCOMM Q1401 commercial chip, and includes ad-
ditional circuitry to provide for computer-controlled node
synch. The Q1401 is designed for the Goddard (7,1/2)
code, which uses the same polynomials as the DSN code
but in a reversed order. A circuit that allows the BVD to
operate with either polynomial order had been designed
but had not been installed during the tests. It will be
tested separately later.

The comparator function compares the decoded bit
stream to a delayed version of the simulated unencoded
bit stream. It includes a variable-delay buffer (used to
align the two streams) and a set of counters that allows
for collection of data for BER versus FEj /Ny evaluation.

The output interface circuit receives decoded bits and
status data from the (7,1/2) decoder chip or from the Pro-
cessor Assembly, records these in a test RAM, and channels
the data to external devices through a Frame Synchroniza-
tion Subsystem (FSS) driver or a FIFO. The FIFO will be
used for interface to the new TPA. An optional differential
decoder is also part of the output circuit.

F. Other Boards

To complete the BVD, several more boards will be
designed and manufactured. The Controller Assembly will
have two more boards: the Processor Assembly Interface
board and the Node Synch board. The Processor Assembly
will have seventeen boards mounted in a complex custom
backplane. The backplane is being designed and manu-
factured by Teradyne Connector Systems to JPL speci-

fications, while the seventeen boards are being designed
by JPL. Sixteen of these boards will be identical and will
house custom VLSI chips, while the seventeenth will per-
form traceback and interface functions.

lll. Laboratory and CTA-21 Test
Results

Tests were conducted in the laboratory and in CTA-
21 to validate BVD operation and compatibility with the
DSN. It is important to note that as DSN interfaces are
upgraded, similar tests will need to be conducted with the
new interfaces. However, the interfaces validated here are
the minimal set needed for the planned 1991 demonstra-
tion in DSS-14, namely symbol input from SSA/BBA and
command/control through an RS232 to a terminal.

During the CTA-21 test, the BVD was connected as
part of a telemetry string (Fig. 3). The test was conducted
at high SNR and the BVD was connected to the station’s
SSA, replacing the current maximum-likelihood convolu-
tional decoder (MCD). Successful decoding was demon-
strated for several input sequence formats. The test used
the Goddard code, i.e., reverse order for code polynomials,
and will be repeated when the circuit is modified to han-
dle both the DSN and Goddard codes. However, the key
objective of verifying DSN compatibility was achieved.

IV. Conclusions

A partial BVD was constructed that has the capabil-
ity to decode (7,1/2) convolutional codes. It was demon-
strated in the laboratory and in the CTA-21 environment,
validating DSN compatibility for the planned May 1991
demonstration.

Reference

[1] J. Statman, G. Zimmerman, F. Pollara, and O. Collins, “A Long Constraint
Length VLSI Viterbi Decoder for the DSN,” TDA Progress Report {2-95, vol.
July-September 1988, Jet Propulsion Laboratory, Pasadena, California, pp.

134-142, November 15, 1988.

124



(a)

COMPUTER/MONITOR/CONTROL

NODE SYNCH | o
ASSEMBLY  |[®
SSA/BBA SSA/BBA PROCESSOR PROCESSOR £SS FSS
2OAB R - ASSEMBLY » 20
INTERFACE SSEMBLY ASSEMBLY INTERFACE
| 3
SIMULATOR COMPARATOR
ASSEMBLY ASSEMBLY
)
COMPUTER/MONITOR/CONTROL
NODE SYNCH
ASSEMBLY
SSA/BBA SSA/BBA P Aoy || PROCESSOR _ FSS FSS
1 INTERFACE | ™| INTERFACE ASSEMBLY INTERFACE
|
o 7.172)
DECODER CHIP
Y
SIMULATOR | comparaToR
ASSEMBLY P~ ASSEMBLY
)
COMPUTER/MONITOR/CONTROL
SSA/BBA SSA/BBA o FSS
—® |NTERFACE ™ NTERFACE

b

\

7,1/2)
DECODER CHiP

)

SIMULATOR
ASSEMBLY

a| COMPARATOR

- ASSEMBLY

Fig. 1. Functional block diagram of Big Viterbl Decoder: (a) original, (b) modified to

include (7,1/2) decoder chip, (c) during test.

125






FOLDOUT FRAME / /

INTERFACE
SYSTEM CLOCK
GENERATION
37
[ 1, TCT
TCT DATAIN
577001 INTERFACE
1241
SSA -
SSADATAIN INTERFACE
SSA SIMULATED D/
SSA SIMULATED CL
SNR ESTIMAT
12+3
5CSIINPUT[_ ———yl—ti| FIFO - :
12 +1
%
|
MUX
12// l
Y
8/
CODED
DATA —
TEST
RAM
EEPROM BOARD

'D"‘
'D'1

reT
-

il

il

"Cq

—
=
L

LOCCO00C
OO0

0
e







FOLDOUT FRAME 2 )

30ARD SYSTEM CLOCKS ENCODER BOARD
— - — CLKA SIMULATED SIMULATED
. . SYMBOL CLOCK »  BITCLOCK
. " e LKL GENERATION GENERATION
UNCODED f
BIT DATA BIT CLK SHIFT
GENERATORS CONTROL LOGIC
12 311211
—  MUX < 8 B+1
FXeD | °, ")
1 OF 8 MUX NOISE —~5<#= MUX [ - ] exTNoISE N
REF
L 1+1
- 7
TA GENERATOR 7 1 s A
CK GENERATOR 1
———— PROGRAMMABLE | | £ NOISE SAMPLES | g
ENCODER ¥ NOISE SQUARES
yé
Y 1 % Y
SYMBOL SCALE 174>{ T MOISE SCALE
N BOARD %
1241 124
. 1 OF 3 MUX l 7 CODED SYMBOL + NOISE DATA
7
12+ 1
r———
3 UNCODED DATA
COMPARATOR BOARD
SCALE RAM T
<
UNCODED
2 VARIABLE DELAY Y- DATA
/‘ V4 TEST
y 1, RAM
ALTERNATE SYMBOL ' | ]
SIGN-FLIPPER 4.4 1 SCALED SYMBC > 4
", (PLUS NOISE) BIT COMPARISON
7 BIT ERROR RATE jwe DIFFERENTIAL
: DECODER
z‘%gg*\'};’tggs Z SYMBOL RATE
 SOUARES 7 ESTIMATION v
1/ +
3+) {7.1/2) VITERBI 1
¢——<——»| DECODERCHIP =< MUX FIFO
]1 & RESYNC CTRL
A
| Y
: 1 +/2
| % ~ |scsioutpur
| 141/
| 8+1 Y
: S ER
| | | PROCESSOR FSS DRIV 141
g PROCESSOR | Emety|  ASSEMBLY * -
i ASSEMBLY INTERFACE 7 TO FSS
l PROCESSOR ASSEMBLY INTERFACE BOARD |
| L {CURRENTLY UNDER CONSTRUCTION] B

Fig. 2. Detailed block diagram of Big Viterbl Decoder.

127






REGULAR CTA-21 SET-UP

TEST SIGNAL ASSEMBLY
(TSA)

RECEIVER, SSA

.
t

!

MAXIMUM-LIKELIHOOD
CONVOLUTIONAL DECODER
(MCD)

BIG VITERBI DECODER
(BVD)

Fig. 3. CTA-21 test setup.

PRECEDING PAGE BLANK NOT FILMED

129



S)2-6/

YT 4

N9O-19447

¥
\) “TDA Progress Report 42.99

Fast Transform Decoding of Nonsystematic
Reed-Solomon Codes

T. K. Truong and K.-M. Cheung
Communications Systems Research Section

l. S. Reed
University of Southern California, Department of Electrical Engineering

A. Shiozaki
Osaka Electro-Communication University, Osaka, Japan

This article considers a Reed-Solomon (RS) code to be a special case of a re-
dundant residue polynomial (RRP) code, and presents a fast transform decoding
algorithm to correct both errors and erasures. This decoding scheme is an im-
provement of the decoding algorithm for the RRP code suggested by Shiozaki and

November 15, 1989

Nishida [1], and can be realized readily on VLSI chips.

l. Introduction

Classes of redundant residue polynomial (RRP) codes
were introduced first in [3,4]. These codes are constructed
by use of the Chinese remainder theorem for polynomials
over a finite field GF(g). The codeword symbols of the
RRP codes are expressed as polynomials over this field.
The RRP codes can correct ¢ error symbols with the aid
of 2t redundant symbols.

Reed-Solomon (RS) codes constitute a subclass of
RRP codes and are used in many sectors of today’s indus-
try. Some examples are the (255,223) 16-error-correcting
RS code (NASA code) used in deep-space communications,
the (31,15) 8-error-correcting RS code (JTIDS code) used
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in military communications, and the Cross Interleaving RS
code (CIRC code) used in the compact-disc industry.

As Shiozaki [5] points out, by using the Chinese re-
mainder theorem together with the Euclidean algorithm,
an RRP code can be decoded without solving the error-
locator polynomial and the error-evaluator polynomial.
The decoder developed in [5] is a general frequency-domain
implementation type depicted in the second block diagram
in Fig. 9.2 of [2]. The advantage of the decoder in [5] over
the decoder in [2] is that both the recursive extension and
the inverse transform can be replaced by a single polyno-
mial division. However, the method proposed by Shiozaki
has the disadvantage that the reconstruction of the cor-
rupted information polynomial F'(z) from the received



symbols involves n polynomial multiplications in GF(q),
followed by the operation modulo M(x), where n is the
codeword length and M(z) is a product of n polynomials.
These operations severely lower the decoding speed.

This article considers RS codes to be a special case
of the RRP codes and proposes to decode RS codes by
the use of both the Fermat number transform [6,7] and
the Euclidean algorithm. The Fermat number transform
(FNT) eliminates polynomial multiplications and reduces
the number of multiplications needed to reconstruct F'(x)
to nlog, n. The fast transform decoding scheme proposed
in this article is faster than the decoding algorithm in [5].

Il. Some Preliminaries on Finite Fields and
the Fast Fermat Number Transform

Given that GF(q) is a finite field, let GF(q)[z] be the
ring of polynomials over GF(g).

Definition 1. The two polynomials m;(x) and my(z)
over GF(q) are said to be relatively prime if and only if
the greatest common multiple of my(z) and my(z) is a
constant in GF(q).

Definition 2. The two polynomials m;(z) and m(z)
over GF(q) are said to be congruent modulo m(z), ie.,
my(z) = my(z) mod m(z) if and only if m(z) divides
my(z) — ma(z).

The Chinese remainder theorem is presented here for
convenience; proof can be found in {11]. Let M(z) =
IT;-, mi(z) be a product of pairwise relatively prime poly-
nomials. Let A;(z), A2(z),..., A;(2) be any r polynomials
such that deg[A;(z)] < deg[m;(z)],7=1,2,...,r. Finally,
let t;(x) satisfy '

M(z)

- ——ti(z) = 1mod my(z) for (i=1,2,...,1)

There then exists one and only one polynomial f(z)
of GF(q)[z] of degree satisfying deg[f(z)] < deg[M(z)],
which uniquely solves the system of congruences:

f(z) = Ai(z) mod m;(z)

The polynomial f(z) is given by

f(e) = Z = (())t (D) di(@) mod Mz) (1)

Let GF(q) be a finite field, let n be a number that
divides q — 1 and let ¥ be a primitive nth root of unity.
Define (a;)7=, to be a sequence of n elements from GF(q).

A discrete Fourier transform of this sequence of length n
is defined by

n-1
Ar = Ea;'yki mod ¢ for (k=0,1,...,

i=o

n—1) (2a)

The inverse discrete Fourier transform of Ay, is defined

by

n-1
-1 LZ Aw'”’] modg for (i=0,1,...,n—1)
=0
(2b)

A direct computation of the transform in Eq. (2a) or
its inverse transform in Eq. (2b) requires n(n — 1) multi-
plications.

When ¢ is a Fermat prime, the Fermat number trans-
form (FNT) over GF(q) can be used. A Fermat prime Fy,
is defined by

Fro=2"" 41 for (m=1,2,3,4)

Fro=2"" 41 for(m=1,23,4)

It is shown in [6,7] that integer 3 is a primitive
1 =22"th root of unity in GF(F,,). Next, let n divide
22™ . Finally, suppose ¥ is a primitive nth root of unity in

GF(F,,) where

5= 3l/n

The purpose of an FNT of length n IS to compute ef-
ficiently the transform sequence (Ax)?Zs using Eq. (2a).
On the other hand, the inverse Fermat number transform
(IFNT) of length n reconstructs the sequence (a;)7=, from
the sequence (Ak)k —o via Eq. (2b). Since the order of v is
a power of 2 in GF(F,;), the length of the sequence to be
transformed is a power of 2. As a consequence, the very
efficient FNT can then be used to yield a fast transform [6]
which is analogous to the fast Fourier transform (FFT). In
this case, the number of multiplications involved in evalu-
ating such a transform sequence of length n is nlog, n [8].
A new type of Fermat number multiplier is developed in
[9]. More details about the FNT can be found in [6].
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lll. Nonsystematic RS Codes

First, a set of RRP codes is defined. As shown next,
these codes are constructed using the Chinese remainder
theorem for polynomials over a finite field GF(g). Let
mg(z), mi(z),. .., and m,_,(z) be n relatively prime poly-
nomials, and

n-—-1

M(z)= H m;(z)

i=0

Assume that the degree of each m;(z) is d, and that
kd information symbols u = (ug, 4y, ..., Ukd—1) are repre-
sented by the information polynomial as

F(z) =up+wz+ -+ tgg1z*4!

where u;¢GF(q) and ¥ < n. Then an RRP code is the
residue representation of F(z), that is,

V= (AQ(.’L'),A]((C), - ,An_l(z))

where A;(z) = F(z) mod m;(z) and deg[4;(z)] < d. By
the Chinese remainder theorem, F(z) can be recaptured
from A;(z). The vector corresponding to the polynomial
A;(z) is named the ith symbol. A code vector v can correct
error symbols less than or equal to ¢ symbols if n — k > 2¢

(3,4].

The following shows that RS codes are a subclass of
RRP codes. In order to facilitate the fast encoding and de-
coding procedures, which make use of the fast FNT meth-
ods as described in Section II, the codeword length n is
required to be a power of 2.

Let mo(z), mi(z),...,mu_1(z) be n relatively prime
polynomials given by

mi(z)=z~v" for(i=0,1,...,n—1)

Also let the k information symbols
(uo,u1,. .., uk—1), uieGF(q)
be denoted by the information polynomial
F(z)=uw+wmz+ -+ up_qz¥ !
Then the equations

F(1) = F(z) mod mo(z)
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F(y) = F(z) mod my(z), ...,
and

F(y" 1) = F(z) mod mp_;(z)
lead to a code vector v represented by

r= (AO;Al, cee 7An—1) = (F(l),F(y), -,F(‘yn_l))

The code vector v is a nonsystematic RS codeword.
It is not difficult to see that ¥ = (Ao, A1,...,An-1) is
just the FNT of the sequence (ug,uy,...,ut-1,0,...,0)
and the k information symbols (up,u;,...,ux—1), ie.,
F(z) can be recaptured by an IFNT on the code vector
v=(40,A1,...,An-1).

On the other hand, since an RS code is a special case
of an RRP code, the information polynomial F(z) can be
recaptured also from v = (Aq, A1,..., An—1) by the use of
the Chinese remainder theorem. Let ¢;{(z) denote a poly-
nomial that satisfies

—A{-(—:E-)—ti(r) = 1mod m;(z) for (i=0,1,...,n=1) (3)

m;(z)

where
n—1 n-—-1 )
M(@z) = [[ Miz) = [[ (= - 7)
i=0 i=0

Then the information polynomial F(z) can be recon-
structed as

n-1
Flz) = [E —fngf;)ti(x)A;jI (mod M(z))

i=0 e 1§

IV. Decoding RS Codes

As Shiozaki et al. [1,5] point out, by using the Chi-
nese remainder theorem together with the Euclidean algo-
rithm, the RRP codes, which include the RS codes, can be
decoded without solving the error-locator polynomial and
the error-evaluator polynomial. However, that method has
the disadvantage that the reconstruction of the corrupted
information polynomial F'(z) from the received symbols
involves n polynomial multiplications in GF(q) followed
by the operation modulo M(z). These operations can sig-
nificantly lower the decoding speed. A modified decoding
scheme, which makes use of the fast transform technique



to bypass the tedious polynomial multiplications and mod-
ulo M (z) operation, is given in the Appendix.

A. Decoding for Correcting Errors

The overall decoding of nonsystematic RS codes for
correcting errors using the Euclidean algorithm is summa-
rized in the following (see the Appendix for details):

1. Compute the IFNT of the received code word v’ =
(Ap, A, ..., A,_,) from Eq. (A-1) in the Appendix to
obtain

Fl@)=uh+uiz+ - +uy_z" "

in Eq. (A-3). Next, calculate the degree of F'(z). If
deg[F'(z)] < k, where k is the number of information
symbols, then the information polynomial F(z) = F'(z);
otherwise, go to step 2.

2. To determine the error-locator polynomial D(z) in
Eq. (A-5) and F'(z)D(z), apply the Euclidean algorithm
to M(z) defined in Eq. (3) and F'(z). The initial val-
ues of the Euclidean algorithm are p;(z) = 0,po(z) =
L,r_i(z) = M(z), and ro(z) = F'(z). The iterative
procedure of the Euclidean algorithm terminates when
deg[ri(z)] < n — |(d — 1)/2] where |z] denotes the great-
est integer less than or equal to z.

3. Compute F(z) from Eq. (A-14).

A flowchart of a decoding algorithm to correct errors
only is depicted in Fig. 1. An example of this decoding
scheme is given in Example 1.

B. Decoding to Correct Errors and Erasures

Shiozaki [5] suggests a decoding scheme to correct
both errors and erasures. This algorithm ignores the era-
sure locations and uses the Chinese remainder theorem and
the Euclidean algorithm to decode the shortened RS code-
word. However, the shortened codeword loses the FFT
structure; thus, a fast transform decoding scheme cannot
be used. In this section, an improved decoding scheme
is suggested which uses the fast-transform techniques dis-
cussed in the previous sections to decode RS codewords
with both errors and erasures.

Suppose an RS codeword is transmitted through a
noisy channel. Let there be s erasure symbols and ¢ error
symbols in the codeword such that 2t + s < n — k. Next,
assume that the symbols at positions kq, ks, ..., k, are era-

sure symbols and that the symbols at positions £y, 4s, ..., ¢
are error symbols. Finally, define

s

Dye)=J(z—7*)  (known) @)
i=1
and
t
Dy(z) = H(z — ) (unknown)
i=1
and

D(z) = Di(z)Ds(2)

By an extension of the derivation of the key Eq. (A-9)
given in the Appendix, the following key equation for both
errors and erasures can be obtained:

—M(z)B(z) + F'(z)D1(z)Da(z) = F(z)D1(z)D2(z) ;

where B(z) is as defined in Eq. (A-5) in the Appendix,
deg[D3(z)] < [(d—1-5)/2], and deg[F(2)D1(z) D2(2)] <
n—|(d-1-5)/2] -1

The Euclidean algorithm is an iterative procedure
which can be used to find in Eq. (5) the greatest common
divisor (GCD) of M(z) and F'(z)D(z) [10]. An impor-
tant intermediate relationship among the polynomials of
the Euclidean algorithm is given in the equation

F'(z)Dy(z)pi(z) + M(z)si(z) = ri(z) (6a)

and

deg[pi(z)] + deg[ri(z)] < deg[M(z)] for —1<i<m
(6b)

where 7 is the iterative index and rp(z) is the GCD of
F'(z)Di(z) and M(z). The algorithm involves four se-
quences of polynomials: s;(z), pi(z), ri(z), and ¢;(z). The
initial conditions are set in accordance with the following
rules:

1. For deg[F’'(z)Di(z)] < deg[M(z)], set s_1(z) = 1,
so(z) = 0, p_1(z) = 0, po(z) = 1, r_y(z) = M(z), and
ro(z) = F'(z)D1(x).
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2. For deg[F'(x)D1(z)] > deg[M(z)), set s_1(z) =0,
so(x) = 1, pr(e) = 1, po(x) = 0, r_1(z) = F'(z)Dy(z),
and ro(z) = M(z).

Since 2t +s<n-—k,

deg[Da(z)] + deg[F(2)D1(2)Dq(z)] =2t +s+k—1<n
= deg[M(z)]
(M

Therefore, let 2t +s <n—k, u= [(d—1-15)/2], and
v=n-—|{d—1-35)/2] —1. By the proof of the theorem in
the Appendix and Egs. (5), (6a), (6b), and (7), there ex-
ists a unique index j in the Euclidean algorithm such that
Da(z) = Ma)ps(z) and F(z)Dy(2)Da(z) = Mz)ry(2),
where A(z) is some polynomial, deg[p;(2)] < [(d—1~s)/2],
and deg[r;(z)] < n — |[(d — 1 — 5)/2]. Thus, F(z) can be
reconstructed as follows:

ri(z)
F(t) = or—— 8
(%) Pi(z) D1 () (8)
The overall decoding of nonsystematic RS codes for
correcting errors and erasures using the Euclidean algo-
rithm is summarized in the following steps:

1. Use step 1. from the description of decoding for
correcting errors.

2. Compute the erasure-locator polynomial Dj(z)
from Eq. (4). Next, compare deg[F'(z)D;(z)] with
deg[M (x)]. If deg[F'(z)D;(z)] < deg[M(z)], set p_1(z) =
0, po(z) = 1, r_1(z) = M(z), and ro(z) = F'(z)D1(z);
otherwise, set p_1(z) = 1, po(z) = 0, r_i(z) =
F'(x)Dy (), and ro(z) = M(z).

3. To determine the error-locator polynomial D;(z)
and F'(x)D(z), apply the Euclidean algorithm to M(z)
and F'(z)D;(z). The initial values of the Euclidean algo-
rithm are defined in step 2; the iterative procedure of the
algorithm terminates when deg[ri(z)] < n—|(d—1—35)/2].

4. Compute F(z) from Eq. (8).

A flowchart of the decoding scheme for correcting both
errors and erasures is given in Fig. 2. A depiction of this
decoding scheme is presented in Example 2.

This simpler, faster transform-decoding scheme using
the FNT for RS codes is particularly suitable for pipeline
VLSI implementation. The transform-decoding scheme
utilizes an efficient FNT to compute the corrupted infor-
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mation polynomial F’(z) in a manner analogous to syn-
drome computation in the conventional decoding schemes.
However, this new algorithm does not require the extra
steps needed to solve the error-locator and error-evaluator
polynomials.

C. Examples of the Two Decoding Methods

Example 1. Consider the Fermat prime F3 = 17, and
let k = 4. This is an (8,4) RS code over GF(17), which is
capable of correcting two errors or less. It is shown in [6]
that v = 2 is a primitive 8th root of unity. Also, for this
case,

M(:r):l::[(:c—'y")zzs—l

Let the four information symbols be u = (2,3,1,4).
Then F(z) =2+ 3z + 22 + 423, An FNT on the sequence
(2,3,1,4,0,0,0,0) yields the codeword v = (10,10, 14,13,
13,2,5,0). Next, let the third and seventh symbols be er-
roneous. Thus, e = (0,0,5,0,0,0,15,0) and ¢/ = (10, 10,2,
13,13,2,3,0), where v, e, and v’ are as defined in the
Appendix. After taking the IFNT on u/, one obtains
F'(z) = 13 + 8z + 7z? + 1623 + 112* + 52°% + 62% + 1227.
The Euclidean algorithm stops after the second iteration
to yield ro(z) = 10z° + 11z* + 923 + 1622 + 16z + 5 and
p2(z) = 112? + 11. Then F(z) is recaptured as

F(:c):ﬂz2+3z+xz+4x3
p2(x)

That is, u = (2,3, 1,4).

Example 2. Consider the same codeword v =
(10,10,14,13,13,2,5,0) given in Example 1. Let the first
symbol be an error symbol, and the third and seventh sym-
bols be erasure symbols. Thus, ¢ = (1,0,5,0,0,0,15,0),
and V' = (11,10,2,13,13,2,3,0). After the IFNT is taken
of V', one obtains F'(z) = 11+ 6z +52%+ 1423+ 9z*+ 325+
4254+ 10z7. Since the erasure symbols are at the third and
seventh positions, D;(z) = (z—22)(z—-2°%) = 22 +1. Thus,
F'(z)Dy(z) = 102°+42%+132"+132%+ 14z* + 323 + 1622 +
6z + 11. The Euclidean algorithm stops after the second
iteration to yield ro(z) = 2% + 122% + 10z* + 1623 + 4z + 8
and py(z) = 13z + 4. Then F(z) is recaptured as

ro(z)

— 2 — 94 3z + 2%+ 423
p2(z)Di(x)

F{z)=

That is, u = (2,3,1,4).



V. Conclusions

In this article, a fast transform decoding scheme is in-
troduced which is particularly suitable for VLSI implemen-
tation. This scheme first utilizes the highly efficient Fermat
number transform to calculate the corrupted information

polynomial F'(z). It then uses the Euclidean algorithm to
evaluate the information polynomial F(z) directly, with-
out going through the intermediate steps of solving the
error-locator and error-evaluator polynomials. Thus, this
fast-transform decoding scheme is faster and simpler than
the decoding scheme in [1].
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Appendix
Decoding RS Codes Using the Euclidean Algorithm

Suppose the codeword v = (Ao, Ay,...,An1) is
transmitted through a noisy channel. Assume that the
symbols at positions £;,f,..., and £, are in error. The
received codeword v/ is thus represented by

v'=v+e=(4p 4., A, (A-1)

where ¢ is the error vector defined by
e=1(0,...,64,0,...,€,...,0)V (A-2)
Let (ub,u},...,up_,) and (wp,wy,...,wa_1) be the
inverse transforms of /' and e respectively. Also let

Fl(z) =uj+ vz + - +ul,_,z""! be defined as the cor-
rupted information polynomial, and E(z) = wo + wiz +
-4 wp_1z" ! be defined as the error polynomial.

It is not difficult to see that the residue representations
of F'(z) and E(z), modulo m;(x) are Eqs. (A-1) and (A-2)
respectively. That is, 2’ and e can be written, respectively,
as

= (F'(1),F'(7),..., F'(v*™))

and

")

From Section III, an RS codeword v is generated by
an information polynomial F(z) via the following:

v=(FQ1),F(),....F(y" 1)

Since ¥’ = v + e, one obtains F'(y") = F(y*) + E(y)
for 0 < i < n—1. Thus, there are at least n values of z for
which F’(z) and F(z)+ E(z) are equal. It is obvious that
deg[F(z)] < k,deg[F'(z)] < n, and deg[E(z)] < n. Hence,
by the fundamental theorem of algebra,

e=(E(),E(y),...,B(y

F'(z) = F(z) + E(z) (A-3)

Since RS codes are a special case of RRP codes, it is
shown in [5] that F’(z) and E(z) can also be reconstructed
using the Chinese remainder theorem as follows:

Fl(z) = [i (x) t (z)A; ] mod M (z)
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and
E(z) = [Z} M(z) t,,(z)e,,] mod M(z)  (A-4)
Let
B(z) = [_}i_‘, D (”’) ,] mod D(z) (A-5)
where

D(z) =

H my, ()

is called the error-locator polynomial. The key equation of
the decoding algorithm is derived from these relationships.
First, let

M(z)

42 = By

(A-6)

and

~ E D(z) D@ 4, (2)es,

B'(z) = e (2)

Then, by Eq. (A-4), one has

E(z) = M(z) Z D(j)tg‘(z:)egi mod M(z)

D(z) ~ m

[A(z)B'(z)] mod A(z)D(z) (A-7)

Equation {A-7) can now be re-expressed as:
E(z)

= A(z) M=) D(z) + B'()]

= A(z) [B(z) mod D(z)) (A-8)



where A(z) is some polynomial over the finite field. Using
Eq. (A-5), a substitution of A(z) and B’(z) in Eq. (A-6)
into Eq. (A-8) yields

_ M(z)

o B(@)

E(z) = E) (A-9)

The proof of Eq. (A-9) is similar to the proof given
in [5]. A similar result of Eq. (A-9) is given by Blahut in
theorem 9.1.1 of [2] using a spectral technique. The de-
coder in Fig. 9.2 of [2] applies the Euclidean algorithm to
M(z) and the 2t high-order coefficients of E(x) to deter-
mine the error-locator polynomial D(z). Then a recursive
extension is used to compute the rest of the coefficients of
E(z) from the known D(z). Finally, the inverse transform
over GF(2") of Ej is taken to recover the error pattern.

The next paragraph describes how the decoder de-
veloped in this article applies the Euclidean algorithm to
the polynomials M (z) and F’(x) rather than to the usual
M (z) and the syndrome polynomial S(z), i.e., the 2¢ high-
order coefficients of E(z). In other words, to determine
polynomials D(z) and F(xz)D(z), this new decoder applies
the Euclidean algorithm to M(z) and F'(z). Thus, F(z)
can be reconstructed from F(z) = F(z)D(z)/D(z). The
advantage of this new decoder over the decoder developed
in Fig. 9.3 of [2] is that both the recursive extension and
the inverse transform can be replaced by a single polyno-
mial division.

By combining Eqgs. (A-3) and (A-9), the key equation
is obtained as follows:

—~M(z)B(z) + F'(z)D(z) = F(z)D(x) (A-10)

where B(z) is defined as in Eq. (A-5).

The Euclidean algorithm is an iterative procedure to
find the greatest common divisor (GCD) of M(z) and
F'(z) [10]. An important intermediate relationship among
the polynomials of the Euclidean algorithm is given in the
following:

—M(x)si(z) + F'(2)pi(z) = i) (A-11)
and
deg [Pi(a)] + deg[ri(z)] < deg[M ()]
and
for—1<i<m (A-12)

where i is the iterative index, and rm(z) is the GCD of
F'(z) and M(z). The algorithm involves four sequences
of polynomials: s;(z), pi(z), ri(z), and ¢i(z). The initial
conditions are: s_;(z) =1, so(z) = 0, p_1(z) = 0, po(z) =
1, ro1(z) = M(z), and ro(z) = F'(z); ¢q-1(z) and gqo(2)
are not defined,

The following lemma and theorem [10] show that the
Euclidean algorithm can be applied to the key Eq. (A-10)
to solve for the information polynomial F(z).

Lemma. Given two non-negative integers g and v
with v > deg[rn,(z)] satisfying g + v = deg[M(z)] - 1,
there exists a unique index j, 0 < j < m, such that

deg [pj(2)] < 1
and

deg[rj(z)] < v
For the proof, see [10].

Using the above lemma, the following theorem can be
proved [10]:

Theorem. Suppose p(z), s(z), and r{x) are nonzero
polynomials satisfying

—M(z)s(z) + F'(z)p(z) = r(z)
and
deg [p(z)] + deg [r(z)] < deg [M(z)]

There then exists a unique index j, 0 < j <m, and a
polynomial A(z) such that

p(z) = A(z)p;(z)
and

r(z) = A(z)r;(z)

Now let n—k = 2T, where T is the maximum number
of errors in an RS code which can be corrected. If the
number of errors ¢ in a received RS codeword is less than
or equal to T, then deg[D(z)] < T and deg[F(z)D(z)] <
k+T—-1=n-T-1. Thus,

deg [D(z)] + deg [F(z)D(z)] < deg[M(z)] =n (A-13)
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Thus,let n—k > 2t,u =T, and v = deg[M(z)]—1— T and deg[r;(x)] < n — T — 1. Thus, F(z) can be recon-
pu =n-T-1. By the proof of the above theorem and Egs. structed as:
(A-10), (A-11), (A-12), and (A-13), there exists a unique
index j in the Euclidean algorithm such that D(z) = F(z) = ri(z) Al4
Az)p;(z) and F(z)D(z) = A(z)rj(z), where deg [p; ()] < - pi(z) (A-14)
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This article presents some results in terms of the performance improvement of
a multi-feed array configuration over the usual single feed system when an adaptive
least-squares algorithm is applied for the signal reconstruction. The article presents
two novel versions of the least-squares algorithm, one of which is based on the max-
imization of the signal-to-noise ratio while the other is based on the deconvolution
of the received signal field. These algorithms have been developed for the purpose
of minimizing degradations arising from various sources, which can severely limit
the performance (gain) of a single-feed system.

I. Introduction

The development of multi-element array process-
ing techniques has many potential applications for the
Deep Space Network (DSN). These include signal recon-
struction for both X-band and Ka-band communications
[1-4] and electronic pointing to augment existing mechan-
ical pointing techniques. For all of these applications,
multi-element array processing can generally provide sig-
nificant performance improvements over single-feed an-
tenna configurations, which are predominantly used in the

DSN.

This article presents some results in terms of the per-
formance improvement provided by a linear multi-feed ar-
ray incorporating the proposed adaptive least-squares al-
gorithm over a single-feed array system, as applied to the
signal reconstruction problem. While the assumed linear
array geometry is idealized, the results of this analysis pro-

vide an indication of performance improvements that can
be achieved with adaptive, multi-element array processing.
This article describes two versions of the least-squares al-
gorithm, one of which is based on the maximization of the
signal-to-noise ratio while the other is based on deconvo-
lution of the received signal field. Here, instead of trying
to model the signal degradations in terms of deterministic
equations in evaluating the performance of the algorithm,
it is assumed that these degradations are “unknown” to
the algorithm and vary with time. The algorithm tries to
implicitly estimate these degradations in an adaptive man-
ner from the samples of the noisy received signal. On the
basis of these measurements, it computes a set of weights
for combining signals at the outputs of various feeds in or-
der to maximize the signal-to-noise ratio of the combined
signal.

For the purposes of illustrating the basic concepts in-
volved with adaptive array processing, this article presents
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the results for a 16-element linear-array feed system. The
performance of the least-squares algorithm is to a first or-
der determined by the signal-to-noise ratio of the received
signal, the number of feeds in the configuration, and the
time constants at which the received signal field is varying
with time.

In practice, it may be possible to simultaneously cor-
rect for multiple degradations arising from different sources
and having different time constants. These degradations
may be induced by wind, gravitational loading, or antenna
pointing errors. Simultaneous correction for such degrada-
tions could be achieved by adjusting the time constants of
the algorithm to track the fastest mode, in which case the
slower modes would be estimated sub-optimally. Alterna-
tively, one could track the most significant mode, thereby
essentially ignoring the faster but less significant modes.
More sophisticated techniques could also be used for sep-
aration of the modes and tracking of them separately.

Il. Array Configuration

The specific array configuration of interest in this ar-
ticle corresponds to a linear-feed array distributed across
the focal plane of an antenna. The array outputs are then
fed to a parallel receiver bank as indicated in Fig. 1. As
shown in the schematic diagram of Fig. 1, the signal out-
puts from the feed elements are amplified by r f amplifiers.
Assuming that all of the amplifiers have equal gain and
noise temperature, the output of the ith amplifier can be
written as

ri(t) = Ai(t) cos(wet + 6:(8)) + ni(t) (1)

where A;(t) and 6;(t) are the signal amplitudes and phases,
w, denotes the signal carrier frequency, and n;(t) is a zero-
mean white Gaussian noise of one-sided spectral density
Ng. The noise is also assumed to be spatially uncorrelated,
ie., E[ni(t)n;(t)]=0fori# jandi,j=1,2,..,N. Under
ideal conditions and assuming a plane-wave normally inci-
dent on the antenna aperture, the amplitude of the center
feed would be equal to /2P (P denotes the normalized
power received by the antenna), while the remaining feeds
will have nearly zero amplitude. However, array degrada-
tions can disperse the signal amplitude (and phase) spa-
tially over N feeds. These degradations can arise due to
various sources, such as gravity, thermal fields, wind, and
atmospheric turbulence.

In the presence of such degradations, the adaptive sig-

nal processing algorithm then combines the N feed outputs
in a coherent manner so as to optimise some performance
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index, such as the signal-to-noise power ratio of the com-
bined signal. This processing can occur either at r f or
can be equivalently done at the baseband. Alternatively,
in some possible imaging applications, it may be desired
to reconstruct the complete focal plane field, i.e., obtain
N output signals that are close to the outputs of the focal
plane fields in the ideal antenna case.! Note that in the
more general case, more than one feed may have signifi-
cant amplitude if the source is not a point source and the
antenna is capable of resolving such a composite source.
In the limiting case, one may simply use the center out-
put of the reconstructed field and ignore the others, thus
achieving an alternative combination of the input signals.

For the purposes of signal processing, the N received
r f signals ;(t); ¢ = 1,2,..., N are down-converted and
quadrature sampled to obtain the sampled version of the
complex baseband envelope g;(t) of the r f signal r;(t) with

ri(t) = Re{g,-(t)ej“"‘}
g:(t) = A; ()% 1 u(t) (2)

gi(t) = {r,'(t) + f‘s(t)}e'j"’ct

In Eq. (2) above, 7;(t) denotes the Hilbert transform
of r;(t), and v;(t) is the complex envelope of the bandpass
noise n;(t).

lll. Signal Combining Via Adaptive
Least-Squares Algorithm |

As shown in Fig. 1, the adaptive algorithm deter-
mines the time-varying complex-valued weighting coeffi-
cients w; (k), ..., wx (k) on the basis of signal samples g;(;);
i=1,2,..,N;and j = 1,2,...,k according to some appro-
priate optimization criterion. The algorithm is adaptive
in the sense that if the signal amplitudes and phases (A;
and ;) remain relatively constant with time, then with
increasing value of k, the algorithm achieves increasingly
accurate estimates of these parameters, and the weighting
coefficients converge asymptotically to their theoretically
optimum values with an exponential convergence rate. On
the other hand, if these parameters are time-varying, then

' V. Vilnrotter, “Ka-Band Array Signal Processing Progress
Report,” JPL Interoffice Memorandum No. 331-88.5-047 (in-
ternal document), Jet Propulsion Laboratory, Pasadena, Cal-

ifornia, November 1988.



the algorithm tracks these variations and the weighting co-
efficients are truly time-varying (there is no tendency for
w;(k) to converge to some constant value).

Denoting by w(k) and g(k) the weighting coeflicient
vector [wy(k)wz(k) ... wn (k)] and the measurement vec-
tor [g1(k)ga2(k)...gn (k)] respectively, then the familiar
least-square optimization criterion is to select w(k) so as
to minimize the following index

Te =Y 11— w (k)g(i)? 3)
j=1

with respect to the weight vector w(k) for k =1,2,.... In
the above, the superscript H denotes conjugate transpose
while 7 represents just the transpose of a matrix. The op-
timal solution, termed least-squares estimate of w(k), is
given by (assuming k > N)

k -ty
Wrs(k) = {ZQ(J')QH(J')} Zg(j) 4)
j=1

i=1

If the distortion process is time-varying, then it is more
appropriate to replace the index J; by the one obtained
by multiplying the summand in Eq. (3) by A*¥~7 for some
0 < A < 1, minimization of which yields the following ex-
ponentially data-weighted least-squares estimate for w(k).

-1
k k
Wers(k) = {Z ’\k-JQ(j)_SLH(j)} Z A=ig(3)  (5)
i=1 j=1

Note that in the adaptive algorithm’s present non-recursive
form, Eq. (4), it is required to invert an (N x N) matrix for
every time instance k in the computation of @w(k), which
is somewhat computationally intensive. This problem can
be overcome by replacing the estimate in Eq. (5) with its
recursive form, which is obtained as follows.

Denoting by P(k) the matrix inverse in Eq. (5), then
the matrix P~'(k) has the following update.

P k)= AP Mk — 1)+ g(k)g" (k); k=1,2,... (6)

Application of the matrix inversion lemma [5] to Eq. (6)
yields the following desired recursion for P(k).

P(k) =27 Bk — 1) = [A+ g ())P(k — 1)g(B)]

x P(k - Dg(k)g” (k) E(k - 1)} (7)

One may note that the entity to be inverted in Eq. (7) is
only a scalar. Decomposing the sum in Eq. (5) as

k-1
A2 gNTT 4 g(k)

and substituting Eq. (7) for P(k), we obtain the following
expression for W g s(k).

k-1
Wprs(k) = L(k-1) {Zg_(j)/\k_l_j}
i=1
- [+ @R -]

x P(k — 1)g(k)g" (k)P(k — 1)

k-1
" {zv—l-@m} +ER®R)  ®
j=1

By noting that the first term in Eq. (8) and the product
of the last two factors in the second term both are equal
to @ grg(k — 1), Eq. (8) may be rewritten as

Wprs(k) =@ prsk — 1)+ B(k)g(k)
— [+ g 0BCk - )]
x P(k—1)g(k)g" (k)& grs(k 1) (9)

Post multiplying both sides of Eq. (7) by g(k) and with a
simple algebraic manipulation, it follows that,

[A+ 7 (1) Bk~ 1)g(k)] B(E~1)g(k) = P(R)g(k) (10)

With the substitution of Eq. (10) in the last term of
Eq. (9), one obtains the recursive version of the algorithm
given below.

B prs(k) = @ prs(k - 1)+ E(k)g(k)

X [1 - gH(k)@_ELs(k - 1)] (11)

2 =37 { 2 - 1) =[x+ g (20 - Dg(h)]
x E(k = DgB)g" (MEE- D}
k=0,1,2,...
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If the complex field g(k) is a wide-sense stationary pro-
cess, a considerable simplification in computations may be
achieved by replacing P(k) with an appropriate constant
matrix in the first recursion of Eq. (11) and dropping the
second recursion.

IV. Maximization of Signal-to-Noise Ratio
via Modified Least-Squares Algorithm |

In some applications, it may be more appropriate to
maximize the signal-to-noise power ratio at the combiner
output. The noise variance at the output of the combiner is
equal toz,{il |@; |2E[|vi]?] = o?||@}|? with 6% denoting the
variance of the sampled version of the complex baseband
process v;(t) in Eq. (2). Thus, as shown in the Appendix,
an effective maximization of the output signal-to-noise ra-
tio can be achieved by minimization of the index given in
Eq. (3) subject to the equality

flall® = K (12)

for some constant K, or by simply minimizing the following
index,

k
S o= w (R)g(HP +vE)(lll® - K)  (13)
j=1

with respect to w and v(k), where y(k) is the Lagrangian
multiplier. Differentiation of Eq. (13) with respect to w
yields the following constrained least-squares estimate for
w in terms of y(k) as

-1

k k
Weps(k) = {Zg(j)gH(J')+‘r(k)I D9 (19)
i=1

=1

Substituting Eq. (14) into Eq. (12) yields an equation for
the unknown y(k), which can be solved for y(k). Substi-
tuting (k) back in Eq. (14) provides the constrained op-
timum solution for the weighting coefficient vector. Note,
however, that there is no close-form solution for v{k) and,
thus, some numerical optimization techniques may need
to be applied to obtain W,g. A simplified solution is
obtained by selecting some appropriate value for (k) in
Eq. (14) and then normalizing the estimate to have its
norm equal to one. In an exponentially data-weighted ver-
sion of Eq. (14), both the summands are multiplied by A~/
where X is the exponential data-weighting coefficient. With
these modifications, Eq. (14) has the following equivalent
form.
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27H(k) = ARTH(k — 1) + Yo + g(k)g" (k)
$(k) = Mp(k — 1) + g(k)

w(k) = (k)3 (k) (15)

@NLS = @_(k)/”@.(k)”

(k) = 7o(1 = A)/(1-2)

Note that Eq. (15) requires a matrix inversion for each
value of k for which @w(k) is desired. An approximate re-
cursive form for Eq. (15), which does not require matrix
inversion, may also be derived by applying the matrix in-
version lemma. Note that in Eq. (15), the higher value
of 7o results in the higher relative weight assigned to the
noise variance at the combiner output. The initial values
for P~! and ¥ at k = 0 may simply be selected equal to
Z€TO.

V. Least Squares Algorithm |i

In an alternative solution, it may be assumed that
the received focal plane signal is the result of the spatial
convolution of the ideal signal (in the absence of any distor-
tion) with an unknown filter response representing various
distortions from all sources, including antenna surface de-
formations due to gravity, wind, antenna pointing errors,
turbulence, etc., i.e.,

g(k) = B X (k) + p(k) (16)
where B is a Toeplitz matrix, X is the focal plane sig-
nal vector that under appropriate sampling is equal to
[0...010...0] in the ideal case of plane-wave with no dis-
tortion, and y is the additive noise vector. The matrix B
includes any distortion effects, pointing errors, etc. For the
linear array case under consideration, B can be approxi-
mated by a circular matrix for large N or becomes identical
to a circular matrix provided the vector X (k) and the sig-
nal vector g(k) are zero-padded. Thus, it is assumed that
B is circular. In the absence of noise, it is observed that
X = B~ !g where B™! is also a circular matrix. How-
ever, B is unknown, and it needs to be estimated from the
noisy observations. Or, more directly, B! is estimated as
follows. Rewriting the model Eq. (16) as

X(k) = E'g(b)+o(k); k=12,...  (I7)
where F is an unknown circular matrix to be estimated
from the given measurement g(k); k = 1,2...,n. Letting



iT = [f1, f2...fn] denote the first row of the matrix F,
and g (k) denote the vector obtained by cyclically shifting
g(k) right £ times, the following equivalent signal model is
obtained.

g RACHEFAEEICR
- Tk || 13 va(k)
1] = + ;o k=12
o] Lo ®] L] Low,

(18)
A least-squares estimate for f can be obtained from the

signal model Eq. (18) and in its non-recursive form is given
by

i E /N-i R
f(k) = {Z ( &(j)g,”(j))} Ins) (19)
j=1 =0 j=1

A recursive form for the estimate f(k) may also be derived
following the steps used in obtaining Eq. (11). Here re-
cursion is over both the signal sample vector g(k) and its
circular shifts. With appropriate initial values__Ij(O, 0) and
estimate f (0,0), one has the following recursion in terms
of the indices k and j, with k denoting time and j denoting
the cyclic shift of the received signal vector,

E(k3) =3 Bk - )
- [" +g;  (R)E(k,j - l)gj_l(k)] -
xP(k,j ~1)g;_,(K)g]_,(k)E(k,j - 1)};
i=12,...

P(k+1,0)= P(k,N); k=1,2,...

x {5,- — g () f(k,s — 1)];
i=12,...

fk+1,00= f(k,N); k=1,2,...
(20)

where

£j=1’ j= I.N/2J
=0, j#[N/2]

where |z] denotes the least integer greater than or equal
to z for any real z. The circular spatial convolution of
f* with the received signal g(k) yields the reconstructed
signal vector A(k). In the case of perfect reconstruction
(deconvolution), the central element of the vector A is the
combined signal, while the remaining elements would be
Zero.

VI. Simulations

The performance of the least-squares algorithms of
the previous section is presented here in terms of simu-
lations. In the following simulations, a linear feed array
is considered. For the purposes of these simulations, the
received signal focal field is generated by spatially Fourier
transforming a simulated linear aperture plane array. The
signals in the simulated aperture are assumed to be of
equal amplitude but with completely independent phase
processes. Also, for the purposes of simulations, each of
these phase processes is assumed to be a moving aver-
age process of a specified correlation interval K and vari-
ance (steady-state). The effectiveness of the different least-
squares algorithms is measured in terms of the power ratio
(in dB) of the reconstructed (combined) signal to the total
received power (which would be concentrated in the cen-
tral feed element under ideal conditions). In addition, the
performance of the least-squares multi-element combining
algorithm is compared against traditional single-element
processing. It should be noted that for all of these sim-
ulation experiments, the noise variance at the combiner
output is matched to the noise variance at the output of
a single feed (the weighting parameter vector @ is normal-
ized to have unit norm).

In the simulations reported here, it is assumed that
the received signal is unmodulated with the signal field
amplitude equal to 1 in the aperture plane, corresponding
to a signal amplitude Aq equal to 16 at the center feed in
the focal plane (ideal case). In case of data modulation, a
decision-directed approach may be used to remove the data
modulation from the received signal. For the purposes of
simulations, the sampling period is normalized to 1 sec.
Thus, the variance o2 of the sampled complex envelope of
the noise at any of the feed outputs used in the simulations
is given by

o2 = AL/Nof, (21)
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where f, is the sampling frequency; Ny is the one-sided
noise spectral density; P = A2Z/2 is the received-signal
power; and the algorithm’s performance is plotted as a
function of the carrier-to-noise spectral density ratio: CNR
= (P/Ny) (in dB-Hz).

In Fig. 2, the reconstructed signal amplitude and
phase estimates as a function of time measured in num-
ber of samples for the least-squares algorithm for a CNR
of 10 dB-Hz are plotted. It may be observed from Fig. 2(a)
that there is a considerable signal loss compared to the
received signal amplitude equal to 16 for the ideal case.
In the simulations, the initial estimate for the parameter
vector @ is selected to be [@ «...e] with o = 1/16. As
is apparent from Fig. 2(b), the phase-estimation error of
the reconstructed signal is much smaller compared to the
rms phase error of 1 rad introduced in the simulated re-
ceived signal field. Figure 3 plots the corresponding results
for the modified least-squares algorithm for the same set
of signal parameters and for 74 = 100. Comparison of
Figs. 2(a) and 3(a) shows a very significant performance
improvement due to the proposed modification of the least-
squares algorithm. Results are plotted in Fig. 4 for the case
of 20 dB CNR with the parameter 7 equal to 200. For this
case, the signal amplitude and phase of the reconstructed
signal are quite close to their respective values for the ideal
case. The signal amplitude loss for this case is only 1.09 dB
relative to the ideal case, and the rms phase error (after
adaptive combining) is 0.1 rad.

A. Simulation Results for Least-Squares
Algorithm |

Figure 5(a) plots the sample estimates of the signal
power loss (compared to the ideal case) for the standard
least-squares algorithm I. The signal loss Py, is simply com-
puted as P, = 20log,(Arms/16) with

where A; is the reconstructed signal amplitude at the ith
sampling instance, and M is the number of sample values
selected to be equal to 200 for these simulations. Fig-
ure 5(b) plots the signal estimation rms phase error O,
computed as ' o '

146

where 8; is the phase of the combined signal at the ith
sampling instance. It is apparent from these figures that
although the least-squares algorithm is optimal with re-
spect to the prediction error criterion, it is not satisfactory
in terms of the signal-to-noise ratio of the combined sig-
nal. For the case of simulated phase dynamics, there is an
asymptotic signal loss of 4 dB for the high CNR (~ 20 dB)
case.

Figure 6 plots the performance of the modified least-
squares algorithm with Y¢ = 100 and with the same set
of signal parameters as for the case of Fig. 5. The results
are computed for three different values of the weighting
coefficient: A equal to 0.925, 0.95, and 0.975. Compari-
son of Figs. 5(a) and 6 shows a dramatic improvement in
performance due to the proposed modification. Thus, the
asymptotic signal loss for this case and with A = 0.925 is
only 1.3 dB compared to a 4 dB loss for the standard least-
squares algorithm. Increasing the value of 7y or reducing
A may further reduce the signal loss.

It is not difficult to understand this marked perfor-
mance difference between the two algorithms. By mini-
mizing the sum of the norm square of the estimated sig-
nal error and the noise variance of the combined signal
output, the standard least-squares algorithm produces a
relatively large noise variance at the output. This is so
because at high CNR the contribution of noise to the to-
tal error is relatively much smaller than the contribution
due to signal error (measured as a fraction of total sig-
nal), and, thus, the former is essentially ignored by the
algorithm. In the constrained least-squares algorithm, by
increasing the relative weighting attached to the noise vari-
ance, the signal-to-noise ratio at the combiner output is
increased. In fact, as is shown in the Appendix, whereas
the standard least-squares algorithm effectively maximizes
the signal plus noise power output (subject to a near-
orthogonality constraint), the constrained algorithm ac-
tually maximizes the signal-to-noise power ratio (subject
to a similar near-orthogonality constraint) at the combiner
output.

The signal loss results presented in Figs. 6(a)-(c) can
also be used to infer the performance gains provided by
the multi-element least-squares technique over center-feed
processing. In particular, we can define the array process-
ing gain as the difference (in dB) between the combining
losses of the least-squares and center-feed curves. These
data are plotted in Fig. 6(d).

As seen in Fig. 6(d), the array processing gain is a
function of both CNR and M. Best results occur for large
CNR (> 15 dB) and low values of A (A = 0.925). In par-



ticular, a maximum array gain of 3 dB (Fig. 6(a)) can be
achieved for this simulation example. For lower values of
CNR (below 0 dB), the estimation variance inherent in
the least-squares algorithm degrades the array processing
gain to such an extent that center-feed processing actually
provides better performance.

However, it must be stressed that the simulation
example considered here corresponds to a relatively
high dynamic scenario, e.g., as compared with typical
mechanically-induced array degradations. Lower dynamic
scenarios permit longer time constants for the least-squares
algorithm (A — 1 and/or longer sampling period), thereby
reducing the algorithm estimation variance. Thus, for low
dynamic scenarios, positive array gains can be achieved
over a wider range of CNRs (including CNR « 0 dB) by
utilizing time constants that are essentially matched to
the dynamics. For sampling periods with T different from
1 sec, the results of Fig. 6 are applicable with the CNRs
scaled by T. For instance, with T' = 10 sec (typical for
slower processes), the normalized CNR of 0 dB in Fig. 6
will correspond to the actual CNR of —10 dB.

It should also be noted that for a given scenario, in-
creasing A to such an extent that the algorithm cannot
track the dynamics will lead to degraded system perfor-
mance. This can be clearly seen from Fig. 6, where it
is observed that the array gain for A = 0.975 is approx-
imately 1 dB less than for A = 0.925. Finally, it can be
observed from Fig. 7 that in contrast to the array gain re-
sults, there is little difference in rms phase error between
the least-squares and center-feed outputs.

B. Simulation Results for Least-Squares Algorithm 1l

Figures 8(a) and (b) plot the performance of least-
squares algorithm II in terms of signal reconstruction. In
these figures, the dashed graphs depict the amplified signal
amplitude A; at the output of various feeds, while the solid-
lined graphs represent the amplitude of the reconstructed
field, i.e., the magnitude of various components of h(k)
obtained by the circular convolution of the weight vector
f(k) obtained from Eq. (19) or Eq. (20), and the received
signal vector g(k), for two different time indices equal to
30 and 185, respectively. As for the case of least-squares
algorithm I, it is assumed that the weight vector f is nor-
malized to have its norm equal to 1. This ensures that the
noise variance at various points of the reconstructed field
is equal to the variance of the input noise field and, thus,
the comparison in terms of signal amplitudes is equiva-
lent to comparing the reconstructed signal-to-noise power
ratio. The results in Fig. 8 correspond to the same set

of signal parameters as for least-squares algorithm 1 and
a CNR of 10 dB. As is apparent from Fig. 8, the least-
squares algorithm II focuses most of the signal power that
is originally dispersed in 16 taps into the center tap. A
more appropriate measure of the effective focusing is ob-
tained by the signal amplitude of the center tap of the re-
constructed field, which is plotted versus time in Fig. 9(a).
In this case, only —5.2 dB of the received signal power
is scattered in the other taps for the reconstructed field.
Figure 9(b) plots the phase error of the center tap signal
and shows an rms phase error of 0.12 rad. Figure 10 plots
the corresponding results for the case of Yo = 100 and dif-
fers insignificantly from the corresponding results in Fig. 9.
Thus, the least-squares algorithm II simultaneously opti-
mizes the signal-to-noise ratio. Figure 11(a) plots the sig-
nal loss in the center feed of the reconstructed signal for
the least-squares algorithm II. As shown in the figure, with
the parameter A = 0.925, a loss of 1.25 dB can be achieved
for the high CNR. case, which is similar to that obtained
for modified least-squares algorithm I. Figure 11(b) plots
the corresponding results for the rms phase error of the
reconstructed signal, showing an rms phase error of about

0.12 rad at CNRs higher than 10 dB.

Figure 12 plots the results when the algorithm is ap-
plied to a configuration of feeds connected to amplifiers
with different noise figures. For this example, the case
wherein one-half of the total number of amplifiers have
6.0 dB higher noise temperature than others is considered.
The CNR in the figure is still measured with reference to
the amplifier with the lower noise temperature. As may be
inferred from Fig. 12(a), the asymptotic signal loss (CNR
> 10 dB) in this case is 2.2 dB as opposed to 1.2 dB for the
case in which all of the amplifiers have low noise temper-
ature, thus resulting in only 1 dB additional degradation.
Note that if all the amplifiers were replaced by ones with
higher noise temperature, then the degradation would be
about 3 dB with reference to this lower CNR, thus result-
ing in an effective loss of 9 dB.

It may be remarked that in the above presentation, the
sampling period T has been normalized to 1 sec, but the re-
sults are also applicable to different sampling periods by a
simple normalization. As is apparent from Eq. (21), while
increasing the sampling rate by a factor K, one should cor-
respondingly reduce the actual CNR by the same factor to
obtain the algorithm’s performance for this case.

VIl. Conclusions

From the simulations presented in the article, it can
be observed that for the relatively fast distortion process
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with a moderate dispersion and the array geometry con-  the improvement is expected to be higher and to a certain
sidered, the multi-element array configuration provides an  extent will also be influenced by a match between the ar-
improvement of about 3 dB over a single-feed system. For  ray geometry and the pattern of the received signal power
a slower process with possibly higher spatial dispersion, dispersion.
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Appendix

The following shows that the modified least-squares
algorithm I of Section IV achieves constrained maximiza-
tion of the signal-to-noise ratio. In the first instance, the
time averages are replaced by the ensemble averages.

Denoting by s;(k) the signal component of the ith
array element output, consider the problem of minimizing

(A-1)

N
H=E [;s -3 w:s,-F]

i=1

with respect to w;,z = 1,2,...N.
derivative of H w.r.t.w; to zero yields

Setting the partial

N
(5 -3 w}'s;) s:} =0 (A-2)
i=1
Now with § 2 wH s and gé [s1,52,.-.,5n]), the index H
may be written as
E [|s _ §|2] = E [|5|2 +152 -85 - s*§] (A-3)

At the optimal point, the following is obtained from

Eq. (A-2).

E[(5-3)5] =0 (A-4)

Adding the left-hand side of Eq. (A-4) and its complex
conjugate to Eq. (A-3) yields the following form for the
optimization index, subject to the constraint, Eq. (A-4).

515t

Thus, the algorithm that minimizes Eq. (A-1) also maxi-
mizes F [|§|2], subject to the constraint, Eq. (A-4), i.e.,
it is also a signal maximization algorithm. There may

= s - (A-5)

also exist solutions that optimize E [|§ Iz] without the con-

straint, Eq. (A-4), but these may result in la.rge phase error
with respect to S, the desired signal, i.e., 5 and Sei® (for
any random phase ¢) both have the same value of the index

E [|§ |2] but only one of these would simultaneously min-

imize the error function, Eq. (A-1). It may be remarked
that there are, in general, an infinite number of solutions
that satlsfy Eq (A-4), and in effect these orthogonalize the

estimate S and the “error” (S — S) Among these solutions,
the one maximizing E [[S’I ] is selected. Equation (A-4) is
termed the orthogonality constraint.

The optimization index, Eq. (A-1), does not include
the noise variance at the output of the array combiner,
which is given by o2||w||> where 62 is the variance of
v;(k), the noise at the input of the combiner. Thus, now
Eq. (A-1) is minimized subject to the constraint

lwll* = K (A-6)
for some constant K. Or, one can simply minimize
B[IS - wfsP| + 8 (lul? - K)  (AD)

where 3 is the Lagrangian multiplier. An analysis similar
to derivation of Eq. (A-5) shows that with a constraint
similar to Eq. (A-4), the index is given by

ISP - E [|§|2] — 98K (A-8)

for some constants 8 and K. Thus, again the algorithm
maximizes E [|§|2] subject to the constraint that the out-

put noise variance is equal to a constant K o2, and thus
effectively maximizes the output signal-to-noise ratio.

Now from the independence of the received signal s;
and noise ¥; it follows that

B[S - wfgP] (A-9)

oP] = E[Is - w"sl?] + llwl*o?
Minimization of Eq. (A-9) subject to the constraint,
Eq. (A-6), is thus identical to the minimization of Eq. (A-
1) subject to the constraint, Eq. (A-6), and thus effec-
tively maximizes the signal-to-noise ratio under the near
orthogonality constraint. Now for the large value of k,
the index k~1J; with Ji given by Eq. (3) approaches the
left-hand side of Eq. (A-9) under appropriate ergodicity as-
sumptions, and the algorithm of Section IV thus achieves
constrained optimization of the signal-to-noise power ratio.
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It may be remarked that the least-squares algorithm  subject to a constraint similar to Eq. (A-4). Since the last
in the absence of the constraint, Eq. (A-6), effectively min-  term in Eq. (A-10) represents the noise power at the com-
imizes the following index biner output, it can be observed that the standard least-

squares algorithm effectively maximizes the sum of the sig-
nal plus noise power rather than the signal-to-noise power

ISP~ E[I51] - o lul® (A-10)  ratio.
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Drop-lock relationships for the second-order phase-locked loop are derived when
the carrier and a sinusoidal interference signal lie within the predetection filter
bandwidth of the Block IV receiver. Limiter suppression factors are calculated
when a bandpass hard limiter is used to maintain constant total power at the loop.
The parameters of interest are the interference-to-signal power ratio (ISR), the input
signal-to-noise power ratio (SNR), and the interference signal frequency oflset from
carrier Af. Limiter suppression caused by the combined effects of the noise and
the interference signal accounts for the variability in the drop-lock threshold for
given values of the input SNR and ISR parameters. This article goes beyond earlier
published work that focused on the limiter’s effect on the drop-lock threshold; it
accounts for the limiter action in the interference mode and provides an overall
improvement in the prediction accuracy of the drop-lock model.

nal and locks up to the stronger interference signal. This
jump phenomenon is due to the inherent nonlinearities
present in the phase-locked loop for conditions when the
interference-to-noise power ratio (INR) is sufficiently high.

I. Introduction

One major application of the phase-locked loop in a
DSN receiver is tracking the carrier of the received signals

[1]. The receiver phase-locks to the carrier and loses lock
when the carrier margin drops below the lock threshold,
or when an interfering signal is received at the critical am-
plitude and frequency offset from the carrier. Although
telecommunications links are designed with sufficient mar-
gins to ensure performance requirements for the lifetime of
the mission, interference can occur at any time. If the in-
terfering signal power and frequency exceed the threshold
limit, the carrier tracking loop drops the weaker carrier sig-

As the INR decreases, the signal-to-noise ratio (SNR) be-
comes the dominant factor, which can cause the loop to
lose lock when it decreases below the noise threshold level.
This article investigates the effect of the bandpass limiter
when drop-lock of this type occurs.

The carrier tracking loop employed in the Block IV re-
ceiver consists mainly of a second-order phase-locked loop
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preceded by a bandpass limiter. The hard limiter provides
constant power at the input to the loop and effectively
minimizes the total mean-square error of the loop over a
wide range of the SNR. If, in addition to the noise, a sinu-
soidal interference signal is inserted into the limiter along
with the carrier signal, the interference signal will also con-
tribute to the limiter suppression. The limiter’s effect on
the drop-lock threshold becomes evident from its impact
on the loop gain and loop interference-to-signal power ra-
tio (ISR) loop input. Limiter suppression factors for these
parameters are calculated and incorporated into the ba-
sic drop-lock model to improve its prediction accuracy for
large variations in the loop SNR.

Il. Carrier Drop-Lock Model

Figure 1 shows a representative second-order phase-
locked loop preceded by a bandpass limiter. Bruno [2]
derived the loop equations for the case of a strong sig-
nal and a sinusoidal interferer, without the limiter. The
voltage-controlled oscillator (VCO) output is equal to

2 cos [wlt + qSo(t)]

where w; is the VCO frequency (rad/sec) and ¢o(2) is the
phase modulation due to the input through the loop action.
The phase detector is assumed to be a perfect multiplier,
and the loop filter has a transfer characteristic described

as F(s).

Ignoring the effects of narrow-band Gaussian noise,
the input to the loop consists of the sum of two sinuscidal
components:

A sin{w.t) + B sin(w, + Aw)t (§))]

where the first term of Eq. (1) is the wanted signal com-
ponent with frequency w, having constant amplitude A
volts when the limiter reaches a constant output. The in-
terference component has an amplitude equal to B volts
and is offset in frequency from the signal component by an
amount equal to Aw. Defining VISR as B/A, Eq. (1) can
be rewritten as

A sin(w.t) + VISR A sin(w.t + Aw)t
The output modulation @o(?) is given by

KF(p)

$o(t) = = [— sin ¢o(t) + ISR sin (Awt - ¢o(t))]
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where p represents the operator d/dt, F(p) is the loop fil-
ter, and K (1/sec)is the open-loop gain, which includes the
VCO and the phase-detector loop gain. This nonlinear dif-
ferential equation cannot be solved analytically; however,
using the method of perturbations, solutions with best-
approximation trial functions can be obtained. A steady-
state trial solution is assumed to be

@o(t) = A + Osin(Awt + v)

where A represents the static phase error, 8 is the phase
deviation, and v is the phase shift. Bruno [2] derived the
lock constraints as

. —0%8 cos ¢
Sln/\ = —2Jo—(gj_ (2)
_p2
sin(A — v) b7 cosy

~ 2VISR J,(0)

[ossij‘)«/zgiJ}if()g)cosAr [%%E]Z:ISR (3)

where Jg, Ji, and J, are Bessel functions of the first kind,
% is the phase angle of F'(s), and § is the normalized offset
frequency

P Aw
~ K|F(s)]
where s = jAw, and K = the open-loop gain.

Restricting the second-order loop filter with transfer
characteristics,

1+ 13s
14+ ms

F(s) =

where 1 > 15. With Aw > 1/7, one obtains the reason-
able approximation

IF(s)|~ 22 for¢ ~0
T1

The loop is expected to drop lock when the static phase
error approaches 90 deg. Applying this condition and using
Egs. (2) and (3) with the condition that J,(f) ~ 6/2 and

Jo(8) =~ 1 for small phase deviations, the critical ISR can
be given as



This describes the drop-lock threshold for critical values of
ISR and offset frequency A f without the limiter action.

lil. Calculation of the Limiter
Suppression Factors

The effect of the bandpass limiter also needs to be
taken into account, when the carrier, interfering sinusoidal
signal, and narrow-band Gaussian noise are present at the
input to the limiter. Jones [3] calculated the autocorrela-
tion function of the ideal hard limiter under similar con-
ditions. The interaction of the two signals s; and s with
noise generates a filtered output with autocorrelation func-
tion given by

00 b2k|£||£—lz+ 1|l

R(T)=§: i > 2(_%1)!(5_#)p(7)

i=—o0 d=—o0 k=|il [i[+2
X cos[[ilwC — i + Vwsz + £(w2 — wl)] T

where w,; and w, Tepresent the frequencies of s, and s re-
spectively, w, is the bandpass filter center frequency, and
pk is the normalized noise-power envelope function con-
taining both discrete (due to the period terms) and contin-
uous components (associated with the output noise). The
total power contained in these discrete components at the
output is then given by

R = 30 RN €~ 1]cos[ur —wn) —u]r

t=—o00

and the output signal powers are given as

(51)0 = 2”310 = % (%)

5 S r(ed) o ()]
and
(s2)0 = Wor = 75 ()

[Z (= 1)(2(‘8);/1\’) I‘(z-{-%) 2 Fy (—z

52, fﬁ)]
S1

where I and o F] are the gamma and confluent hypergeo-
metric function, respectively. For the case where both the
carrier and interference power are much greater than the
noise power, the convergence properties of these equations
become unstable. Then it becomes necessary to use the
asymptotic forms

(s1)o = (S:> [2F1 (%, %;2; %)]2
5 (2) [Fom o (3]

(s2)o = i

and

for

89 8§
—= ; —<1; k=0
N—+OO 82

These relationships can be used to calculate the limiter
suppression on the carrier power and the power ratio of
the interference and carrier signal. For the case where
interference is not present, the limiter suppression factor
reduces to that calculated by Davenport [4] for a sinusoid
and noise only. With interference present, the limiter sup-
pression becomes affected by changes in both the ISR and
SNR power ratios. Limiter suppression of the carrier sig-
nal from the limited strong signal peak level, which results
in a corresponding suppression of the loop gain, is given

by
s U2
8/n2

Alternately, the limiter suppression of the output ISR with
respect to the